2008 National Winter Canola Variety Trial

Report of Progress 1009

2008 National Winter Canola Variety Trial Table of Contents

Introduction, Objectives, Procedures, 2007-2008 Growing Conditions	1
Test Locations, Results, Acknowledgments	2
RESULTS FROM THE 2008 NATIONAL WINTER CANOLA VARIETY TRIALS	
Meridianville, AL, Table 1	3
Marianna, AR, Table 2	5
Griffin, GA, Table 3	
Clayton, NC, Table 4	9
Reidsville, NC, Table 5	11
Fletcher, NC, Table 6	
Plymouth, NC, Table 7	15
Petersburg, VA, Table 8	17
Southeast Winter Canola Summary, 2004-2008, Figure 1	19
Belleville, IL, Table 9	
Carbondale, IL, Table 10	23
Macomb, IL, Table 11	25
Columbia City, IN, Table 12	
Vincennes, IN, Table 13	28
Russellville, KY, Table 14	30
Fremont, OH, Table 15	32
Knoxville, TN, Table 16	
Milan, TN, Table 17	35
Springfield, TN, Table 18	37
Midwest Winter Canola Summary, 2004-2008, Figure 2	39
Akron, CO, Table 19	41
Fruita, CO, Table 20	43
Rocky Ford, CO, Table 21	
Walsh, CO, Table 22	47
Yellow Jacket, CO, Table 23	49
Garden City, KS, Table 24	51
Hesston, KS, Table 25	53
Scottsbluff, NE, Table 26	55
Farmington, NM, Table 27	57
Enid, OK, Table 28	59
Goodwell, OK, Table 29	61
Perkins, OK, Table 30	63
Tipton, OK, Table 31	65
Chillicothe, TX, Table 32	67
Great Plains Winter Canola Summary, 2004-2008, Figure 3	69
Creston, MT, Table 33	71
Prosper, ND, Table 34	72
Othello, WA, Table 35	73
Lingle, WY, Table 36	75
Torrington, WY, Table 37	77
Northern Winter Canola Summary, 2004-2008, Figure 4	79
Blackleg Evaluations, Table 38	
Seed Sources for NWCVT Entries, Table 39	82

2008 National Winter Canola Variety Trial

Introduction

Winter canola production is a good fit for small-grains cropping systems because both use the same equipment. Canola is an excellent crop to rotate with winter wheat. Subsequent wheat crops have shown a 10% or greater increase in yield following canola. Canola is a broadleaf crop, which allows use of more effective herbicides to control grassy winter annual weeds. Canola and wheat have no major diseases in common, so growing canola breaks weed and disease cycles. Because canola is an oilseed, its commodity price is not tied to prices of cereal grains, which spreads economic risk over more than one commodity class.

Objectives

Objectives of the National Winter Canola Variety Trial (NWCVT) are to evaluate germplasm over a wide range of environments, determine where released varieties experimental lines are best adapted, and increase visibility of winter canola across the nation. Information obtained from these trials aids producers with variety selection. Over the years, the number of environments and entries tested in this trial have increased. The trial is planted at locations in the Great Plains, Midwest, Northern Plains, and Southeast. The wide diversity of environments has improved our knowledge and understanding of winter canola variety performance.

Procedures

The NWCVT was distributed to 66 locations in 28 states during the 2007-2008 growing season. There were 60 entries; 25 of these are marketed in the United States, and 35 are experimental. These entries were provided by 10 global seed suppliers. All entries in the trial were treated with either Helix Xtra or Prosper FX to control insects and diseases during winter months. Two new seed

companies participated in the trial: Blue Sun Biodiesel and Winfield Solutions/Croplan Genetics. The trial continues in the 2008-2009 growing season and includes 52 entries. Eleven seed suppliers contributed to the trial, and distribution was 64 locations in 29 states.

Management guidelines were supplied to each cooperator, but previous experience in the regions influenced final management decisions. Agronomic information, site descriptions, and growing conditions are described for each location. All trials were planted in small research plots (approximately 100 ft²) and replicated three times. The University of Idaho Brassica Research Program in Moscow, ID, performed total oil analyses. Results for yield and winter survival at some locations include 2-year summaries. Entries are listed highest to lowest by grain yield.

2007-2008 Growing Conditions

Temperature and precipitation data are plotted at the top of the page for each location. Thick black lines on the temperature graphs represent long-term average high and low temperatures (°F) for the location. The upper thin line represents actual daily high temperatures, and the lower thin line represents actual daily low temperatures. On the precipitation graph, the line labeled "normal" represents long-term average precipitation, and the line labeled "07-08" represents actual precipitation.

In general, the 2007-2008 growing season was a great success. Plants established well at the majority of locations. Most locations had excellent stands and adequate growth before winter. Differential winterkill was observed where winter conditions were more severe. Despite colder temperatures, winter survival was excellent at most locations, indicating that entries had improved survival. Over the years, winter canola has shown a tremendous capacity

to recover following unfavorable weather. Extremely high seed yields were achieved in top-yielding environments where moisture was not limiting.

Test Locations

Six universities were new cooperators in the 2007-2008 variety trial: Iowa State University, University of Maryland, University of Tennessee, Utah State University, Washington State University, and Western Illinois University.

Of the trials distributed, nine locations were lost to winterkill, five to poor establishment, and two to severe weather. Severe weather affected data quality at other locations as well. Thirty-seven locations in 20 states were harvested and included in this report: Meridianville, AL; Marianna, AR; Akron, Fruita, Rocky Ford, Walsh, and Yellow Jacket, CO; Griffin, GA; Belleville, Carbondale, and Macomb, IL; Columbia City and Vincennes, IN; Garden City and Hesston, KS; Russellville, KY; Creston, MT; Clayton, Fletcher, Plymouth, and Reidsville, NC; Scottsbluff, NE; Prosper, ND; Farmington, NM; Fremont, OH; Enid, Goodwell, Perkins, and Tipton, OK; Knoxville, Milan, and Spring Field, TN; Chillicothe, TX; Petersburg, VA; Othello, WA; Lingle and Torrington, WY. Parsons, KS, and Columbia, MO, were harvested, but the data quality was very poor and therefore not included.

Results

The "percentage of test average" yield calculation is included in this year's results. This relative yield calculation allows for some comparison of performance across environments. Entries yielding more than 100% of the test average across multiple locations merit some consideration.

Two entries, Jetton and Plainsman, had extremely poor germination, and data for these entries should be used with caution. As a result, Plainsman and Jetton were dropped as standards, and Kronos, Virginia, and Wichita

were used instead. Regional summary tables were created with data from 2004 to 2008.

Overall yields were higher than in the 2006-2007 growing season and generally above average in the Midwest and Northern Plains. Fourteen of 37 harvested locations averaged greater than 2,000 lb/acre, and 25 included at least one line with yield greater than 2,000 lb/acre. Irrigated locations yielded extremely well in Colorado, Nebraska, New Mexico, Washington, and Wyoming. Dryland locations in Alabama, Arkansas, Illinois, Kentucky, Montana, and North Dakota vielded favorably.

Winter hardiness is an important trait to consider when selecting a winter canola cultivar. This trait has been improved over the past several years, but variability still exists where differential winterkill occurs. Eighteen locations showed differential winterkill among varieties. Several experimental lines averaged higher winter survival than check cultivars in the Great Plains, showing good potential for cultivars with improved survival. Winter canola cultivars should have consistent survival across multiple environments before being considered for commercialization. Winter canola varieties and hybrids under evaluation are resistant to the blackleg fungus (Table 38).

Acknowledgments

This work was funded in part by the National Canola Research Program; United States Department of Agriculture; Cooperative State Research, Education, and Extension Service; Oklahoma Agricultural Experiment Station, and Kansas Agricultural Experiment Station. Assistant scientist Cynthia La Barge and student workers Denton Bailey, Lindsay Van Allen, and Ryan Westerman assisted with planting, care, harvest, and data preparation for these tests. Sincere appreciation is extended to all participating researchers who have a dedicated interest in expanding winter canola production.

Meridianville, Alabama

Ernst Cebert, Alabama A&M University

Planted: 10/2/2007 at 6 lbs/a in 7.5 in. rows

Harvested: 6/16/2008

Herbicides: Trifluralin 2.5 qt/a

Insecticides: None Irrigation: None Previous Crop: Fallow

Soil Test: P=32 ppm, K=320 ppm, and pH= 5.6 Fertilizer: 6.5-6.5-6.5 lbs N-P-K fertilizer in fall

54.4-0-0 lbs N-P-K fertilizer in spring

Soil Type: Decatur silty clay loam

Elevation: 624 ft Latitude: 34°35'N

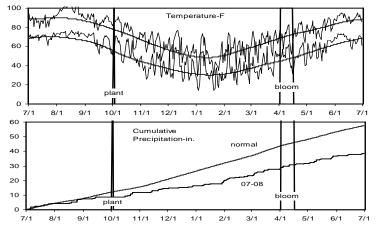


Table 1. Results from the 2008 National Winter Canola Variety Trial at Meridianville, AL

				Yield % of				Fall	50%		Plant				
	Υ	ield (lbs	s/a)	test avg.	Winte	er Surv	ival (%)	Stand	Bloom	Maturity	Height	Lodging	Shatter	Moisture	Oil
Name	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(0-10)	(d)	(d)	(in.)	(%)	(%)	(%)	(%)
Sitro	4268	1136	2702	136	100			9.7	97	159	55	6.7	0.0	7.3	40.9
Hybristar	4064	698	2381	129	100			8.7	99	159	54	0.0	0.0	6.8	41.7
Hybrigold	3929	1334	2632	125	100			8.3	95	163	55	0.0	0.0	7.1	42.5
Safran	3916			125	100			9.0	98	160	53	0.0	0.0	7.4	41.1
KS3077	3861	2014	2937	123	100			9.7	100	160	62	0.0	0.0	7.4	40.7
Hybrisurf	3827			122	100			9.0	96	162	54	0.0	0.0	7.1	40.5
KS3254	3765	1853	2809	120	100			9.3	98	160	56	0.0	0.0	7.4	41.2
CWH095	3671			117	100			9.3	100	160	52	0.0	0.0	7.5	40.8
ARC98007	3669	1298	2484	117	100			10.0	95	162	60	0.0	1.7	7.4	41.5
DSV07100	3638			116	100			9.0	100	160	50	0.0	0.0	7.8	40.2
CWH081	3631			116	100			9.3	98	159	54	0.0	0.0	7.5	42.1
Forza	3609			115	100			8.7	99	160	52	0.0	0.0	7.4	42.0
ARC97018	3605			115	100			9.3	99	162	56	0.0	0.0	7.2	43.9
KS4022	3570	1381	2476	114	100			9.7	96	160	55	0.0	0.0	7.2	41.8
KS9135	3555	2285	2920	113	100			8.3	100	160	56	0.0	0.0	7.3	40.9
Dimension	3537			113	100			9.0	95	159	52	0.0	0.0	7.1	41.0
KS4085	3537	1729	2633	113	100			8.3	97	161	58	0.0	0.0	7.2	41.8
KS3074	3495	1893	2694	111	100			9.7	97	160	55	0.0	0.0	7.4	40.7
Flash	3471	1244	2358	111	100			9.7	100	160	54	0.0	0.0	7.3	42.0
Wichita	3461	1535	2498	110	100			9.0	97	161	53	0.0	0.0	7.1	41.3
ARC2180-1	3457	787	2122	110	100			9.3	96	162	57	16.7	0.0	7.2	42.7
46W14	3447			110	100			9.7	95	161	57	0.0	2.3	7.5	42.9
KS7436	3436	1386	2411	109	100			9.3	96	160	58	0.0	0.0	7.3	39.1
KS3302	3366	1238	2302	107	100			9.3	100	160	54	0.0	0.0	7.5	43.4
Kadore	3363	2276	2820	107	100			9.7	101	161	48	0.0	0.0	7.2	41.1
Abilene	3340	759	2049	106	100			9.0	98	162	57	0.0	0.0	7.5	41.8
KS4158	3300			105	100			8.7	98	159	52	0.0	0.0	7.3	40.5
46W99	3299			105	100			8.7	96	159	54	0.0	0.0	7.3	42.5
HyClass 115W	3223			103	100			9.7	92	161	50	0.0	0.0	7.1	41.9
Baldur	3159	1066	2112	101	100			8.3	99	161	55	0.0	0.0	7.7	42.2
CWH116	3141			100	100			8.7	102	160	50	0.0	0.0	7.4	40.8
Virginia	3134	611	1873	100	100			9.3	94	160	50	0.0	0.0	7.3	41.0
Visby	3098			99	100			8.3	96	159	52	1.7	1.7	7.6	41.2
DKW47-15	3080			98	100			9.0	96	159	51	0.0	0.0	7.2	43.3
45D03	3068			98	100			9.0	97	160	50	0.0	0.0	7.2	43.0
HyClass 110W	3014			96	100			9.7	95	162	49	1.7	0.0	7.4	40.5
CWH111	2918			93	100			9.3	92	160	47	0.0	1.7	7.2	41.4
ARC97019	2916	1398	2157	93	100			8.3	100	159	59	0.0	0.0	7.5	42.0
DKW46-15	2915			93	100			9.3	96	159	54	16.7	0.0	7.0	40.3
BSX-501	2910			93	100			9.0	99	161	56	0.0	0.0	7.1	42.2
HyClass 154W		1223	2060	92	100			8.7	100	160	51	0.0	0.0	7.4	41.7
•															

Table 1. Results from the 2008 National Winter Canola Variety Trial at Meridianville, AL

				Yield % of				Fall	50%		Plant				
	Υ	ield (lbs	s/a)	test avg.	Winte	r Surv	ival (%)	Stand	Bloom	Maturity	Height	Lodging	Shatter	Moisture	Oil
Name	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(0-10)	(d)	(d)	(in.)	(%)	(%)	(%)	(%)
ARC98015	2890	992	1941	92	100			9.0	96	161	61	0.0	0.0	7.1	42.3
KS3132	2884	1656	2270	92	100			9.3	102	160	54	0.0	0.0	7.1	42.0
DKW45-10	2858			91	98			9.0	98	161	48	0.0	0.0	7.1	41.1
CWH633	2832			90	100			9.7	96	159	54	0.0	0.0	7.5	40.5
KS3018	2775	1275	2025	88	100			8.7	96	160	55	0.0	1.7	7.4	40.5
Satori	2740	1242	1991	87	100			8.7	97	159	48	0.0	0.0	7.4	42.0
Ceres	2722	1248	1985	87	100			9.3	100	160	49	0.0	1.7	7.4	42.8
NPZ0791RR	2707	617	1662	86	100			8.7	97	159	49	1.7	0.0	7.6	41.4
Taurus	2704	805	1754	86	100			9.0	92	160	51	0.0	0.0	7.5	40.8
DKW41-10	2702			86	100			8.7	94	159	47	3.3	0.0	7.3	41.3
DKW13-69	2676			85	100			9.7	97	161	51	6.7	1.7	7.4	40.6
Kronos	2618	1449	2034	83	100			9.0	101	160	50	0.0	0.0	7.7	41.2
Rally	2551	1142	1846	81	97			8.3	100	160	52	0.0	0.0	7.1	40.8
BSX-567	2458			78	98			8.3	102	162	54	0.0	0.0	7.0	43.1
Summer	2292	825	1559	73	100			8.3	103	159	49	0.0	0.0	7.5	40.9
Hornet	2286	1061	1674	73	100			8.3	100	160	52	0.0	0.0	7.4	42.1
Plainsman	2003	1695	1849	64	98			8.3	99	161	56	0.0	1.7	7.5	41.8
HyClass 107W	1869			60	100			7.7	101	160	50	0.0	0.0	7.4	41.9
Jetton	1283	947	1115	41	97			7.7	105	163	58	0.0	1.7	7.7	40.6
Mean	3140				100			8.9	98	160	53	0.9	0.3	7.3	41.5
CV	22				1			8.8	4	1	7	632.0	422.0	4.6	1.7
LSD (0.05)	1095				NS			NS	6	NS	6	NS	NS	NS	1.4

Bold - Superior LSD Group - Unless two entries differ by more than the LSD, little confidence can be placed in one being superior to the other. Bloom is recorded as the date after January 1 when 50% of plants have one or more open flowers. Maturity is recorded as the date after January 1 when 90% of plants have reached mature color.

Marianna, Arkansas

Robert Bacon and Jim Kelly, University of Arkansas

Planted: 10/2/2007 Harvested: 6/18/2008 Herbicides: Trifluralin 1 pt/a

Insecticides: None Irrigation: None Previous Crop: NA

Fertilizer: 46-46-0 lbs N-P-K fertilizer in fall

120-0-0-24 lbs N-P-K-S fertilizer in spring

Soil Type: Loring silt loam

Elevation: 234 ft Latitude: 34°45' N

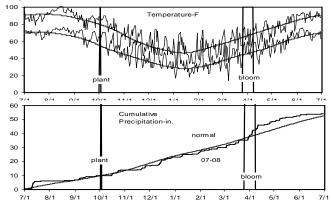


Table 2. Results from the 2008 National Winter Canola Variety Trial at Marianna, AR

				Yield % of te	st				50%		
		Yield (lbs	/a)	avg.	Win	ter Sur	vival (%)	Shatter	Bloom	Test Weight	Oil
Name	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(%)	(d)	(lbs/bu)	(%)
CWH081	3288	2476	2882	150					30-Mar	53.0	39.3
HyClass 154W	3037			138					28-Mar	52.3	39.4
Safran	2913	2435	2674	133					26-Mar	52.6	39.5
Flash	2876			131					27-Mar	52.0	40.3
KS3018	2734			125					31-Mar	53.3	37.8
KS4022	2660	2022	2341	121					26-Mar	52.5	38.9
Forza	2660	2590	2625	121					31-Mar	52.8	37.4
Hybristar	2643			120					31-Mar	52.8	38.4
KS3074	2612			119					28-Mar	53.1	37.3
DSV07100	2585	2589	2587	118					28-Mar	53.2	38.4
KS3302	2584			118					29-Mar	52.4	39.4
ARC98007	2583	1945	2264	118					28-Mar	50.7	38.2
ARC97018	2582			118					31-Mar	52.5	38.6
ARC2180-1	2580	2441	2510	118					28-Mar	52.2	38.4
KS9135	2570	1922	2246	117					1-Apr	51.6	38.5
Sumner	2558	2807	2683	117					1-Apr	52.7	37.2
NPZ0791RR	2553	2323	2438	116					30-Mar	52.5	39.1
Sitro	2524	2209	2367	115					29-Mar	52.5	38.2
Kadore	2486	2579	2533	113					1-Apr	52.5	37.1
HyClass 110W	2483			113					27-Mar	52.2	37.3
Hornet	2476			113					31-Mar	52.3	39.2
DKW45-10	2473	2636	2555	113					5-Apr	53.1	37.4
Wichita	2472	2387	2430	113					30-Mar	52.0	37.8
Baldur	2430	2307		111					29-Mar	52.2	37.9
Kronos	2425	2382	2403	110					26-Mar	52.Z 52.7	38.5
Dimension	2423	2302	2403 	110					28-Mar	52.7 52.5	39.2
BSX-501	2401	2519	2460	109					29-Mar	53.1	37.9
KS3077	2395	2170	2282	109					29-Mar	51.5	38.2
CWH095	2375	2463	2419	108					29-Mar	52.5	39.4
KS3132	2352	2225	2289	107					27-Mar	52.7	38.1
ARC98015	2348	2488	2418	107					1-Apr	52.5	38.4
46W99	2335	2252	2293	106					27-Mar	52.4	39.6
KS4085	2308	2480	2394	105					30-Mar	52.8	38.0
CWH633	2213	2267	2240	101					27-Mar	51.9	37.7
Hybrisurf	2212	2285	2248	101					27-Mar	51.8	37.2
Virginia	2205			100					7-Apr	53.2	39.1
CWH111	2139	2509	2324	97					2-Apr	52.4	37.1
KS7436	2104			96					26-Mar	52.1	38.2
DKW41-10	2093	1969	2031	95					28-Mar	51.9	37.2
Visby	2070	2405	2238	94					30-Mar	52.9	38.4
DKW47-15	2034			93					25-Mar	52.8	38.5
KS3254	2002			91					30-Mar	52.1	38.7
DKW13-69	1979	2379	2179	90					31-Mar	51.3	37.6

Table 2. Results from the 2008 National Winter Canola Variety Trial at Marianna, AR

				Yield % of te	st				50%		
		Yield (lbs	/a)	avg.	Win	ter Surv	vival (%)	Shatter	Bloom	Test Weight	Oil
Name	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(%)	(d)	(lbs/bu)	(%)
Rally	1934			88					29-Mar	52.7	38.0
Ceres	1931			88					26-Mar	52.3	38.8
Hybrigold	1823			83					26-Mar	52.7	39.7
HyClass 107W	1823	2126	1974	83					30-Mar	51.2	36.9
Jetton	1811			83					27-Mar	52.4	36.9
46W14	1805	2634	2219	82					1-Apr	52.1	38.5
ARC97019	1794			82					29-Mar	52.2	39.1
KS4158	1675	2214	1944	76					26-Mar	53.0	40.1
CWH116	1629			74					28-Mar	51.2	36.3
Abilene	1522	2669	2095	69					1-Apr	52.7	37.4
BSX-567	1402			64					26-Mar	52.3	37.1
Plainsman	1387			63					29-Mar	50.5	36.2
Satori	1386			63					29-Mar	51.6	36.0
45D03	1184	2291	1737	54					29-Mar	51.5	38.0
HyClass 115W	1147			52					3-Apr	51.3	37.7
DKW46-15	976	1864	1420	44					1-Apr	52.0	37.4
Taurus	666	2119	1393	30					27-Mar	52.3	38.1
Mean	2195								29-Mar	52.3	38.1
CV	17								0.7	1.3	2.5
LSD (0.05)	612								4	1.1	1.9

Bold - Superior LSD Group - Unless two entries differ by more than the LSD, little confidence can be placed in one being superior to the other. Bloom is recorded as the date after January 1 when 50% of plants have one or more open flowers.

Don Day, John Gassett, and Gary Ware Univeristy of Georgia at Griffin

Planted: 10/8/2007 at 5 lbs/a in 7-in. rows

Harvested: 6/19/2008
Herbicides: None
Insecticides: None
Irrigation: None
Previous Crop: Wheat

Soil Test: P=Medium, K=High, and pH=5.7 Fertilizer: 49-98-147 lbs N-P-K fertilizer in fall

93-0-0 lbs N-P-K fertilizer in spring

Soil Type: Cecil clay loam

Elevation: 924 ft Latitude: 33°16'N

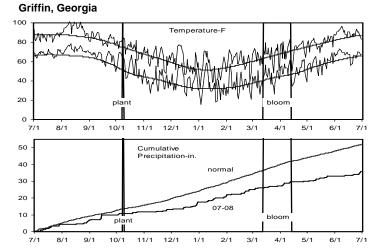


Table 3. Results from the 2008 National Winter Canola Variety Trial at Griffin, GA

				Yield (% of				50%		Plant			
Name	Yie	eld (lbs	/a)	test avg.)	Wint	er Surv	vival (%)	Bloom	Maturity	Height	Lodging	Shatter	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(day)	(day)	(in.)	(0-5)	(%)	(%)
BSX-501	1954			190	100			3-Apr		59	1.0	12	40.6
Safran	1939			189	100			9-Apr		56	1.4	7	40.4
Sitro	1792	1911	1852	175	100			6-Apr		49	2.4	10	42.5
DWK47-15	1533			149	100			5-Apr		62	3.0	30	40.2
Hornet	1506	1573	1540	147	75			8-Apr		54	1.9	12	41.9
KS4158	1477			144	72			7-Apr		58	2.2	47	39.9
Sumner	1465	1685	1575	143	100			29-Mar		55	1.1	25	40.3
CWH633	1346			131	80			6-Apr		54	2.2	45	40.9
Hybristar	1337			130	100			7-Apr		57	2.2	27	40.8
HyClass 110W	1332			130	100			2-Apr		55	1.5	43	41.4
KS4085	1332	1783	1558	130	100			7-Apr		59	1.5	22	40.5
Hybrisurf	1293			126	100			6-Apr		59	1.6	13	42.3
Rally	1285			125	100			8-Apr		52	3.2	13	40.3
Virginia	1254	1813	1534	122	100			3-Apr		44	1.0	10	40.7
KS3074	1242	1690	1466	121	100			7-Apr		59	2.0	18	39.3
Kadore	1230	1846	1538	120	77			10-Apr		51	1.0	42	38.9
P99.603.5 ^b	1203			117	100			13-Mar		49	1.9	12	
KS3302	1199	1550	1375	117	92			6-Apr		55	1.1	32	41.4
DKW45-10	1192			116	100			31-Mar		52	4.2	20	39.6
CWH081	1189			116	100			8-Apr		58	1.0	20	40.0
HyClass 115W	1185			115	77			6-Apr		53	1.6	37	38.4
KS3018	1184	1863	1524	115	100			5-Apr		45	1.8	35	40.3
KS4022	1127	1453	1290	110	100			8-Apr		55	1.2	17	39.7
Flash	1124	1865	1495	110	58			5-Apr		53	1.9	10	42.0
P99.603.8 ^b	1112			108	100			13-Mar		44	2.3	18	
NPZ0791RR	1105			108	100			5-Apr		57	1.6	45	41.3
DKW41-10	1104			108	100			30-Mar		54	3.0	45	39.7
KS7436	1089	1655	1372	106	72			8-Apr		56	2.3	17	39.6
ARC97018	1077	1644	1361	105	80			6-Apr		56	1.3	40	39.6
Forza	1066			104	100			8-Apr		55	1.4	20	38.7
Hybrigold	1064	1825	1445	104	80			5-Apr		54	2.3	35	40.7
ARC98007	1063	1681	1372	104	100			6-Apr		63	2.4	37	40.3
CWH111	1055			103	100			31-Mar		47	1.9	32	41.4
KS3132	1054	1558	1306	103	100			8-Apr		55	1.6	25	40.1
P99.603.1 ^b	1015			99	100			14-Mar		49	1.5	17	
46W14	1010			98	100			4-Apr		53	1.4	27	41.4
45D03	970			95	100			8-Apr		55	2.6	40	40.4
Dimension	964			94	100			6-Apr		57	1.2	25	43.2
ARC97019	955	1605	1280	93	87			6-Apr		60	1.9	30	38.9
Abilene	946	1907	1427	92	77			6-Apr		54	2.2	37	40.0
KS3254	941	1474	1208	92	100			8-Apr		50	1.0	37	40.2
	0		00					ام، ر		00	1.0	٠.	

Table 3. Results from the 2008 National Winter Canola Variety Trial at Griffin, GA

				Yield (% of				50%		Plant			
Name	Yie	eld (lbs	/a)	test avg.)	Wint	er Surv	ival (%)	Bloom	Maturity	Height	Lodging	Shatter	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(day)	(day)	(in.)	(0-5)	(%)	(%)
Ceres	923	1342	1133	90	72			7-Apr		50	2.3	22	38.9
ARC98015	918	1470	1194	89	100			7-Apr		64	1.5	18	39.8
DKW46-15	892			87	77			7-Apr		54	3.5	33	39.8
Satori	870	1480	1175	85	100			7-Apr		53	1.7	33	41.4
Taurus	868	1964	1416	85	100			4-Apr		54	2.5	28	42.3
46W99	840			82	100			5-Apr		58	4.0	43	41.7
Baldur	834	1504	1169	81	65			7-Apr		52	2.6	48	39.7
HyClass 154W	820	1470	1145	80	100			8-Apr		58	4.2	33	39.2
KS9135	790	1758	1274	77	100			7-Apr		56	2.7	33	39.2
KS3077	790	2030	1410	77	67			6-Apr		57	1.7	45	40.4
CWH116	770			75	87			10-Apr		51	1.6	20	38.1
Jetton	762	1604	1183	74	100			12-Apr		61	1.1	43	32.7
BSX-567	730			71	87			8-Apr		52	3.7	18	37.8
CWH095	712			69	100			7-Apr		53	1.4	15	40.5
ARC2180-1	695	1106	901	68	100			6-Apr		55	2.0	32	40.1
HyClass 107W	687			67	100			9-Apr		55	4.7	30	38.7
DKW13-69	565			55	73			7-Apr		62	1.9	35	38.1
DSV07100	563			55	82			5-Apr		57	2.3	63	38.9
Visby	530			52	67			7-Apr		53	3.4	45	35.8
Kronos	518	1388	953	50	57			9-Apr		57	1.9	43	36.8
Wichita	501	1967	1234	49	57			7-Apr		53	1.1	28	38.3
Painsman	358	1103	731	35	73			13-Apr		52	1.2	28	38.7
CH586 ^a	299			29	25			6-Apr		52	3.5	57	
Hearty	162			16	13			22-Feb		54	4.3	55	
Mean	1026				88			4-Apr		55	2.0	30	39.9
LSD (0.10)	270				30			2		8	2.0	20	NS

Bold - Superior LSD Group - Unless two entries differ by more than the LSD, little confidence can be placed in one being superior to the other. Bloom is recorded as the date after January 1 when 50% of plants have one or more open flowers. ^aVariety supplied by Technology Crops International. ^bVariety supplied by the University of Georgia.

Clayton, North Carolina

Kim Tungate and Nicholas George North Carolina State University

Planted: 10/4/2007 at 5 lbs in 6-in. rows

Harvested: 6/5/2008

Herbicides: Glyphosate burndown

Insecticides: None
Irrigation: None
Previous Crop: Small grain
Soil Test: pH=5.8

Fertilizer: 143-49-152-24 lbs N-P-K-S fertilizer in fall

Soil Type: Wagram loamy sand Elevation: Latitude:

Comments:

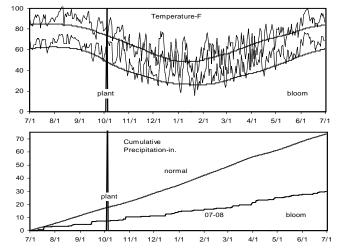


Table 4. Results from the 2008 National Winter Canola Variety Trial at Clayton, NC

				Yield (% of				Plant				
Line		Yield (I	bs/a)	test avg.)	Wii	nter Sur	vival (%)	Height	Maturity	Lodging	Shatter	Oil*
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(in.)	(%)	(%)	(%)	(%)
46W99	1487			180	97			48	98.3	0.0	1.7	40.4
Kronos	1378			166	87			51	93.3	0.0	3.3	39.5
DSV07100	1333			161	93			47	96.7	1.7	5.0	43.7
Dimension	1304			157	77			44	96.7	1.7	3.3	41.5
46W14	1264			153	93			45	96.7	1.7	6.7	41.4
Virginia	1214			147	100			50	100.0	13.3	3.7	39.6
Hybrigold	1175			142	100			44	98.3	0.0	3.3	40.7
CWH095	1166			141	90			54	96.8	0.3	0.7	39.8
Taurus	1151			139	65			48	98.8	0.8	8.2	41.4
Forza	1086			131	87			47	93.3	0.0	1.7	41.6
NPZ0791RR	1071			129	90			48	95.0	0.0	1.7	39.8
DKW46-15	1066			129	83			47	97.0	13.3	10.0	41.3
Hybrisurf	1056			127	100			50	100.0	0.0	0.0	41.2
Baldur	1051			127	90			46	97.7	1.7	8.3	41.3
Hybridstar	1046			126	93			50	93.3	0.0	1.7	40.6
ARC2180-1	1021			123	97			50	98.3	0.0	5.0	40.6
HyClass 110W	991			120	70			48	100.0	0.0	1.7	37.4
KS9135	991			120	80			53	95.0	1.7	1.7	40.1
Sitro	967			117	100			48	96.7	1.7	3.7	41.2
Ceres	947			114	100			50	91.7	1.7	6.7	39.4
KS3302	947			114	90			48	93.3	1.7	5.0	40.8
Sumner	907			110	87			52	96.7	0.0	1.0	40.0
Satori	882			107	90			43	100.0	1.7	3.3	38.8
KS3074	862			104	93			51	95.0	6.7	3.3	39.8
ARC98015	854			103	75			60	94.3	0.3	8.2	41.8
KS3132	838			101	97			49	95.0	1.7	3.3	40.8
DKW13-69	833			101	97			52	95.0	0.0	2.3	40.6
CWH081	818			99	77			50	97.7	3.3	5.0	39.6
DKW41-10	808			98	100			46	93.3	8.3	3.3	39.6
HyClass 115W	788			95	97			43	96.0	3.3	5.0	40.7
DKW47-15	763			92	93			46	97.3	5.0	6.7	40.6
KS4022	763			92	97			46	96.7	3.3	3.3	39.4
KS4085	753			91	83			48	93.3	3.3	3.3	40.8
CWH633	748			90	93			47	98.3	0.0	3.3	40.3
KS4158	734			89	77			49	98.3	0.0	0.0	43.2
BSX-501	729			88	100			46	96.7	0.0	1.7	40.2
Visby	719			87	87			48	95.0	3.3	3.3	40.2
Hornet	709			86	83			49	99.7	0.0	1.7	41.4
Safran	699			84	90			48	96.0	1.7	5.0	38.8
CWH111	679			82	93			43	98.3	1.7	5.0	39.1

Table 4. Results from the 2008 National Winter Canola Variety Trial at Clayton, NC

				Yield (% of				Plant				
Line		Yield (II	bs/a)	test avg.)	Wii	nter Sur	vival (%)	Height	Maturity	Lodging	Shatter	Oil*
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(in.)	(%)	(%)	(%)	(%)
KS3077	674			81	87			55	95.0	8.3	5.0	40.2
KS3018	664			80	90			49	96.7	3.3	3.3	40.6
CWH116	649			78	97			50	88.3	1.7	3.3	41.6
DKW45-10	634			77	100			38	96.7	8.3	6.7	39.4
Wichita	625			75	83			48	100.0	1.7	1.7	41.2
Kadore	610			74	100			39	95.0	3.3	3.3	40.7
Flash	560			68	97			50	96.7	0.0	1.7	40.1
KS3254	515			62	97			50	93.3	1.7	3.3	38.4
45D03	476			57	90			47	91.7	1.7	3.3	40.8
HyClass 107W	471			57	97			46	96.7	11.7	3.3	40.0
HyClass 154W	451			54	90			51	90.0	3.3	1.7	38.7
Rally	397			48	100			50	96.7	33.3	1.7	40.0
BSX-567	378			46	85			48	89.3	0.3	0.7	39.0
Jetton	129			16	102			52	85.0	0.0	8.3	39.4
Mean	849				91			48	95.8	3.1	3.6	40.4
CV	36				16			7	4.4	301.9	110.4	3.8
LSD (0.05)	495				NS			6	6.8	NS	NS	NS

Bold - Superior LSD Group - Unless two entries differ by more than the LSD, little confidence can be placed in one being superior to the other. Maturity is recorded as the percent of plants reaching mature color at harvest. *Oil percentages were mathematically adjusted because some samples had too few seeds for standard analysis.

Reidsville, North Carolina

Kim Tungate and Nicolas George North Carolina State University

Planted: 9/25/2008 at 5 lbs/a in 6-in. rows

Harvested: 6/12/2008

Herbicides: Glyphosate burndown

Insecticides: None Irrigation: None Previous Crop: Tobacco Soil Test: pH=5.3

Fertilizer: 143-0-0 lbs N-P-K fertilizer in fall

Soil Type: Rion sandy loam Elevation: Latitude:

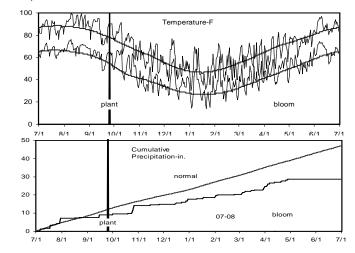


Table 5. Results from the 2008 National Winter Canola Variety Trial at Reidsville, NC

				Yield (% of					Plant			<u>.</u>
Line		Yield (II	bs/a)	test avg.)	Win	ter Surv	/ival (%)	Maturity	Height	Lodging	Shatter	Oil*
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(%)	(in.)	(%)	(%)	(%)
Taurus	2042			150	73			96.7	50	1.7	6.7	43.4
Baldur	1933			142	87			91.7	54	0.0	3.3	41.1
NPZ0791RR	1918			141	63			96.7	51	0.0	1.7	42.3
ARC2180-1	1884			139	83			98.0	60	0.0	1.7	40.1
HyClass 110W	1839			135	77			98.3	47	0.0	0.3	39.8
DKW45-10	1789			132	87			96.3	48	0.0	3.3	39.6
ARC98015	1779			131	83			95.0	58	0.0	6.7	39.9
DSV07100	1631			120	70			95.7	52	0.0	1.7	43.1
Sumner	1621			119	97			99.3	45	0.0	1.7	41.9
Ceres	1616			119	93			98.3	52	0.0	3.3	39.9
Dimension	1591			117	80			96.3	51	0.0	1.7	45.3
KS4158	1576			116	87			98.0	53	0.0	3.3	41.7
CWH633	1556			114	83			98.0	50	0.0	1.7	39.9
DKW46-15	1551			114	100			96.7	48	0.0	1.7	41.9
Wichita	1546			114	93			98.0	45	0.0	0.7	42.0
Forza	1537			113	77			96.7	49	0.0	1.7	40.1
45D03	1532			113	80			96.3	47	0.0	1.7	39.3
Hybrisurf	1482			109	77			96.3	50	0.0	0.0	43.8
HyClass 107W	1466			108	100			99.0	51	-0.2	-0.1	39.1
KS9135	1462			108	83			85.0	55	0.0	3.3	41.0
46W14	1442			106	80			93.3	52	0.0	3.3	41.6
DKW41-10	1432			105	90			99.7	47	0.0	2.3	42.6
KS3254	1423			105	77			96.7	53	0.0	1.7	
Virginia	1418			104	90			100.0	38	0.0	5.0	43.1
Hybrigold	1408			104	90			93.3	50	0.0	3.3	42.6
CWH081	1408			104	93			96.3	49	1.7	0.0	42.5
Kronos	1398			103	77			90.0	54	0.0	3.3	40.4
Visby	1378			101	93			95.0	48	0.0	1.7	41.9
CWH111	1363			100	83			96.7	52	0.0	3.3	43.1
46W99	1343			99	93			97.7	48	0.0	1.7	38.7
KS3074	1314			97	77			94.7	47	0.0	0.0	42.3
CWH095	1299			96	63			95.0	52	0.0	3.7	41.4
HyClass 115W	1284			94	80			99.7	47	0.0	3.3	42.5
KS4085	1279			94	97			98.0	52	0.0	0.0	42.6
Kadore	1274			94	90			91.7	46	0.0	5.0	42.2
CWH116	1274			94	87			96.7	49	0.0	1.7	43.7
KS4022	1259			93	80			93.3	48	0.0	5.0	40.5
KS3018	1254			92	83			91.7	50	0.0	1.7	42.2
HyClass 154W	1249			92	73			96.7	46	0.0	3.3	41.9
KS3077	1249			92	77			91.7	52	1.7	3.3	42.3

Table 5. Results from the 2008 National Winter Canola Variety Trial at Reidsville, NC

				Yield (% of					Plant			
Line		Yield (II	bs/a)	test avg.)	Wir	nter Sur	vival (%)	Maturity	Height	Lodging	Shatter	Oil*
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(%)	(in.)	(%)	(%)	(%)
Safran	1244			92	90			99.7	54	0.0	0.0	42.2
BSX-567	1219			90	87			95.0	44	0.0	0.0	41.0
Satori	1214			89	93			93.3	41	0.0	3.3	43.1
KS3302	1214			89	93			95.0	44	0.0	0.0	43.7
KS3132	1135			84	83			94.7	47	0.0	0.0	43.2
DKW47-15	1071			79	93			100.0	52	0.0	3.3	40.7
DKW13-69	1041			77	97			98.0	52	0.0	1.7	39.2
Hybridstar	1026			75	87			98.3	52	0.0	1.7	42.5
Rally	882			65	90			96.7	52	0.0	0.0	42.5
Flash	823			61	80			96.7	54	13.3	1.7	39.4
BSX-501	823			61	90			99.7	47	0.0	0.0	42.7
Sitro	659			48	90			94.7	49	0.0	1.7	43.0
Hornet	525			39	70			96.3	56	0.0	1.7	42.3
Jetton	466			34	98			89.0	54	1.7	1.7	41.6
Mean	1359				85			95.9	50	0.4	2.1	41.7
CV	29				19			4.4	9	871.4	121.5	3.4
LSD (0.05)	640				NS			6.9	7	NS	NS	2.9

Bold - Superior LSD Group - Unless two entries differ by more than the LSD, little confidence can be placed in one being superior to the other. Maturity is recorded as the percent of plants reaching mature color at harvest. *Oil percentages were mathematically adjusted because some samples had too few seeds for standard analysis.

Fletcher, North Carolina

Kim Tungate and Nicholas George North Carolina State University

Planted: 9/20/2008 at 5 lbs/a in 6-in. rows

Harvested: 6/19/2008

Herbicides: Glyphosate burndown

Insecticides: None
Irrigation: None
Previous Crop: Fallow
Soil Test: pH=6.1

Fertilizer: 143-0-0 lbs N-P-K fertilizer in fall

Soil Type: Bradson gravelly loam

Elevation: Latitude:

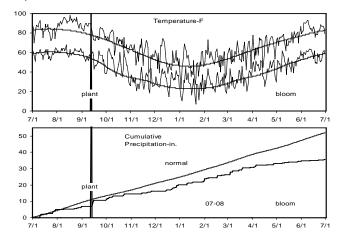


Table 6. Results from the 2008 National Winter Canola Variety Trial at Fletcher, NC

No. No.					Yield (% of				Plant			
Kronos 2171 147 80 58 0.0 0.0 42.9 KS3077 2116 143 87 62 0.0 0.0 38.4 DSV07100 1938 131 100 58 0.0 0.0 45.2 Kadore 1884 127 90 52 0.0 0.0 41.0 Visby 1869 126 87 54 0.0 1.7 42.7 Hybrigold 1735 117 100 52 0.0 0.0 44.1 CWH633 1730 117 100 53 0.0 0.0 43.6 KS30202 1700 115 80 56 10.0 0.0 44.5 KS3158 1669 115 87 57 1.7	Name		Yield (II	os/a)	test avg.)	Win	ter Sur	vival (%)	Height	Lodging	Shatter	Oil*
KS3077 2116 143 87 62 0.0 0.0 38.4 DSV07100 1938 131 100 58 0.0 0.0 45.2 dS 0.0 Visby 1869 126 87 52 0.0 0.0 41.0 Visby 1869 126 87 53 0.0 0.0 42.2 Hybrigoid 1735 1119 97 53 0.0 0.0 44.1 CWH633 1730 1117 100 52 0.0 0.0 44.1 CWH633 1730 1116 100 53 0.0 0.0 43.6 KS4158 1695 1115 80 56 10.0 0.0 43.6 KS4158 1695 1115 80 56 10.0 0.0 43.6 KS4158 1695 1115 87 57 1.7 0.0 43.1 KS3018 1669 1112 90 53 0.4 0.1 41.5 KS3254 1660 1112 90 52 0.0 0.0 42.7 KS3254 1660 112 87 57 0.0 0.0 42.8 KS3254 1660 112 87 57 0.0 0.0 42.8 KS3254 1660 112 87 57 0.0 0.0 42.8 KS3312 1606 112 87 57 0.0 0.0 42.7 KS4085 1591 108 77 60 0.0 0.0 43.5 KS4158 1591 108 77 59 0.0 0.0 42.7 KS4085 1591 108 77 50 0.0 0.0 43.5 KS318 1569 108 77 50 0.0 0.0 43.5 KS318 1561 108 77 50 0.0 0.0 43.5 KS318 1551 108 77 50 0.0 0.0 43.5 KS3155 1532 104 80 50 0.0 0.0 43.5 KS3155 1		2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(in.)	(%)	(%)	(%)
DSV07100	Kronos	2171			147	80			58	0.0	0.0	42.9
Kadore 184	KS3077	2116			143	87			62	0.0	0.0	38.4
Visby 1869 126 87 54 0.0 1.7 42.7 HyClass 154W 1755 119 97 53 0.0 0.0 42.8 Hybrigold 1735 117 100 52 0.0 0.0 42.8 Hybrigold 1735 117 100 52 0.0 0.0 44.8 CWH633 1730 116 100 53 0.0 0.0 44.1 117 1715 116 100 53 0.0 0.0 44.1 117 1715 116 100 53 0.0 0.0 44.1 115 830 56 10.0 0.0 40.5 115 87 57 1.7 0.0 43.1 KS3018 1695 115 87 57 1.7 0.0 43.1 KS3018 1669 1112 87 53 0.4 0.1 41.5 CWH111 1660 112 90 52 0.0 0.0 42.7 ARC98015 1636 1112 87 57 0.0 0.0 42.7 ARC98015 1636 1112 87 59 0.0 0.0 42.7 KS4085 1591 108 77 59 0.0 0.0 42.7 KS4085 1591 108 77 55 0.0 0.0 42.7 KS4085 1591 108 77 50 0.0 0.0 43.5 HyClass 115W 1561 106 90 54 0.0 0.0 43.5 LyClass 115W 1561 106 90 54 0.0 0.0 43.5 LyClass 115W 1561 106 100 50 0.0 0.0 43.5 LyClass 1537 104 70 54 0.0 0.0 43.5 LyClass 1532 104 73 54 0.0 0.0 43.5 LyClass 1522 103 87 54 0.0 0.0 43.5 LyClass 1522 103 87 54 0.0 0.0 43.5 LyClass 1522 104 67 54 0.0 0.0 43.5 LyClass 1532 104 73 54 0.0 0.0 43.5 LyClass 1532 104 73 54 0.0 0.0 43.5 LyClass 1532 104 67 55 0.0 0.0 0.0 43.5 LyClass 1532 104 67 54 0.0 0.0 43.5 LyClass 1542 104 67	DSV07100	1938			131	100			58	0.0	0.0	45.2
HyClass 154W 1755 119 97 53 0.0 0.0 42.8 Hybrigold 1735 117 100 52 0.0 0.0 44.1 CWH633 1730 116 100 53 0.0 0.0 41.9 KS3302 1700 115 80 56 10.0 0.0 40.5 KS3108 1669 113 87 57 1.7 1.0 43.8 KS3218 1669 112 89 53 0.4 0.1 41.5 CWH1111 1660 112 89 57 0.0 0.0 42.7 KS3132 1606 119 97 55 0.0 0.0 42.7 KS4085 1591	Kadore	1884			127	90			52	0.0	0.0	41.0
Hybrigold 1735 1117 100 52 0.0 0.0 44.1 CWH633 1730 1117 93 47 0.0 0.0 43.6 PMW47-15 1715 1116 100 53 0.0 0.0 41.8 RS3302 1700 1115 80 56 10.0 0.0 43.6 RS4158 1695 1115 87 57 1.7 0.0 43.1 RS318 1669 1112 90 52 0.0 0.0 43.8 RS3254 1660 1112 90 52 0.0 0.0 42.7 RC98015 1636 1112 87 57 0.0 0.0 42.7 RS4085 1591 108 77 59 0.0 0.0 42.7 RS4085 1591 108 77 56 0.0 0.0 43.5 RS4158 1591 106 90 54 0.0 0.0 43.5 PhyClass 115W 1561 106 90 54 0.0 0.0 43.5 PhyClass 115W 1561 104 70 54 0.0 0.0 43.5 RS9135 1532 104 70 54 0.0 0.0 43.5 RS9135 1532 104 70 51 0.0 0.0 43.5 RS9135 1532 104 73 51 0.0 0.0 40.6 Wichita 1532 104 87 51 0.0 0.0 40.6 Wichita 1532 104 87 51 0.0 0.0 0.0 42.7 RAF098 154 1532 104 87 51 0.0 0.0 0.0 43.5 RS9135 1532 104 87 51 0.0 0.0 0.0 43.5 RS9135 1532 104 87 51 0.0 0.0 0.0 43.5 RS9135 1532 104 87 51 0.0 0.0 0.0 43.5 RS9135 1532 104 87 51 0.0 0.0 0.0 43.5 RS9135 1532 104 87 51 0.0 0.0 0.0 43.6 RS9	Visby	1869			126	87			54	0.0	1.7	42.7
CWH633 1730 1117 93 47 0.0 0.0 43.6 DKW47-15 1715 1116 100 53 0.0 0.0 43.6 DKW47-15 1715 1115 80 56 10.0 0.0 40.5 KS3302 1700 1115 87 57 1.7 0.0 43.1 KS3018 1669 1113 87 53 0.4 0.1 41.5 CWH111 1660 1112 90 52 0.0 0.0 43.8 KS3254 1660 1112 87 57 0.0 0.0 42.7 ARC98015 1636 1119 97 55 0.0 0.0 42.7 KS4085 1591 108 77 60 0.0 0.0 42.7 KS4085 1591 106 90 54 0.0 0.0 43.5 HyClass 115W 1561 106 90 54 0.0 0.0 43.5 CWH095 1537 104 70 54 0.0 0.0 43.5 KS9135 1532 104 70 54 0.0 1.7 44.4 CWH095 1537 104 70 54 0.0 1.7 44.4 CWH095 1537 104 80 50 0.0 0.0 43.5 KS9136 1532 104 87 51 0.0 0.0 43.5 CS9136 1532 104 87 51 0.0 0.0 43.5 CS9136 1532 104 87 51 0.0 0.0 43.5 CS9136 1532 104 87 54 0.0 1.7 42.4 CWH095 1537 104 80 50 0.0 0.0 40.6 Wichita 1532 104 87 51 0.0 0.0 40.6 Wichita 1532 104 87 51 0.0 0.0 40.6 KS3074 1477 103 83 57 0.0 0.0 43.6 CWH091 1448 99 97 54 0.0 0.0 41.0 CWRS3074 1477 100 80 52 0.0 0.0 41.0 CWRS3074 1477 100 80 53 0.0 0.0 41.0 CWRS3074 1477 100 80 54 0.0 0.0 41.8 CWH099 1447 99 97 54 0.0 0.0 43.6 CWH081 1418 99 97 55 0.0 0.0 0.0 43.6 CWH081 1418 99 97 54 0.0 0.0 43.6 CWH081 1418 99 97 55 0.0 0.0 0.0 43.2 CWH081 1418 99 97 48 0.0 0.0 0.0 43.6 CWH081 1418 99 97 48 0.0 0.0 0.0 43.2 CWH081 1418 99 97 48 0.0 0.0 0.0 43.2	HyClass 154W	1755			119	97			53	0.0	0.0	42.8
DKW47-15 1715 116 100 53 0.0 0.0 41.9 KS3302 1700 115 80 56 10.0 0.0 40.5 KS4158 1669 1115 87 57 1.7 0.0 43.1 KS3018 1669 1112 90 52 0.0 0.0 43.8 KW1111 1660 1112 87 57 0.0 0.0 42.7 ARC98015 1636 1111 77 59 0.0 0.0 40.9 KS3132 1606 109 97 55 0.0 0.0 42.7 KS4085 1591 106 90 54 0.0 0.0 43.2 Hyclass 115W 1561 106 100 50 0.0 0.0 43.2 Dimension 1537 104 73	Hybrigold	1735			117	100			52	0.0	0.0	44.1
KS3302	CWH633	1730			117	93			47	0.0	0.0	43.6
KS4158 1695 1115 87 57 1.7 0.0 43.1 KS3018 1669 1113 87 53 0.4 0.1 41.5 CWH111 1660 1112 90 52 0.0 0.0 43.8 KS3254 1660 1112 87 57 0.0 0.0 42.7 ARC98015 1636 1019 97 55 0.0 0.0 42.7 KS3132 1606 109 97 55 0.0 0.0 42.7 KS3132 1606 108 77 60 0.0 0.0 42.7 KS4085 1591 108 77 55 0.0 0.0 42.7 KS4085 1591 106 90 54 0.0 0.0 43.5 HyClass 115W 1561 106 100 54 0.0 0.0 43.2 Dimension 1537 104 70 54 0.0 1.7 44.4 CWH095 1537 104 80 50 0.0 0.0 43.5 KS9135 1532 104 80 50 0.0 0.0 43.5 KS9135 1532 104 87 54 0.0 1.7 42.4 45D03 1532 104 87 54 0.0 1.7 42.4 45D03 1532 104 87 54 0.0 0.0 40.6 Wichita 1532 104 87 54 0.0 0.0 40.6 Wichita 1532 103 83 57 0.0 0.0 39.6 Taurus 1527 103 83 57 0.0 0.0 43.5 ARC2180-1 1487 101 80 52 0.0 0.0 41.0 ARC2180-1 1487 101 80 52 0.0 0.0 42.0 KS3074 1477 100 80 54 0.0 0.0 44.6 Wichita 1467 99 97 55 0.0 0.0 0.0 43.5 ARC2180-1 1487 99 97 51 0.0 0.0 48.8 Baldur 1423 98 100 48 0.0 0.0 47.1 48099 1447 99 99 97 51 0.0 0.0 43.5 Baldur 1423 98 100 48 0.0 0.0 43.5 Baldur 1423 96 70 48 0.0 0.0 43.5 Baldur 1423 98 100 48 0.0 0.0 43.5 Baldur 1423 98 99 97 50 0.0 0.0 43.5 Baldur 1423 98 99 97 50 0.0 0.0 43.5 Baldur 1433 94 90 43 0.0 0.0 0.0 43.5 Baldur 1433 99 97 50 0.0 0.0 43.5 Baldur 1438 99 97 50 0.0 0.0 0.0 43.5 Baldur 1438 99 97 0 48 0.0 0.0 0.0 43.5 Baldur 1438 99 97 0 48 0	DKW47-15	1715			116	100			53	0.0	0.0	41.9
KS3018	KS3302	1700			115	80			56	10.0	0.0	40.5
CWH111	KS4158	1695			115	87			57	1.7	0.0	43.1
KS3254 1660 1112 87 57 0.0 0.0 42.7 ARC98015 1636 1111 777 59 0.0 0.0 40.9 KS3132 1606 109 97 55 0.0 0.0 42.7 KS4085 1591 108 77 60 0.0 0.0 42.7 KS4085 1591 106 90 54 0.0 0.0 43.5 HyClass 115W 1561 106 100 54 0.0 0.0 43.5 HyClass 115W 1561 106 100 50 0.0 0.0 43.2 Dimension 1537 104 70 54 0.0 1.7 44.4 KWH095 1537 104 80 50 0.0 0.0 43.5 KS9135 1532 104 80 54 0.0 1.7 42.4 45D03 1532 104 87 54 0.0 1.7 42.4 45D03 1532 104 87 54 0.0 0.0 43.6 Wichita 1532 104 87 54 0.0 0.0 39.6 KWidhita 1532 104 87 54 0.0 0.0 39.6 KWH096 1527 103 83 57 0.0 0.0 39.6 CWH096 1522 103 83 57 0.0 0.0 43.4 DKW13-69 1522 103 83 57 0.0 0.0 43.4 DKW13-69 1522 103 87 58 0.0 0.0 41.0 ARC2180-1 1487 101 80 52 0.0 0.0 42.0 KS3074 1477 100 80 53 0.0 0.0 41.6 46W14 1467 99 97 51 0.0 0.0 41.6 46W14 1467 99 97 51 0.0 0.0 41.6 HyCrisurf 1482 98 100 48 0.0 0.0 41.8 BSX-567 1428 99 87 0 54 0.0 0.0 43.2 BSX-567 1428 99 88 57 56 0.0 0.0 43.2 BSX-567 1428 99 88 57 56 0.0 0.0 43.5 Forza 1393 99 89 70 51 0.0 0.0 43.5 Forza 1393 99 97 51 0.0 0.0 43.5 Forza 1393 94 90 95 50 0.0 0.0 42.5 Satori 1353 94 90 95 50 0.0 0.0 42.5 Satori 1353 94 90 95 60 8.3 0.0 40.6 HyClass 107W 1318 90 0.70 46 61 7.7 0.0 40.6	KS3018	1669			113	87			53	0.4	0.1	41.5
ARC98015 1636 1111 77 59 0.0 0.0 40.9 KS3132 1606 109 97 55 0.0 0.0 42.7 KS4085 1591 108 77 60 0.0 0.0 41.4 Hybridstar 1566 106 90 54 0.0 0.0 43.5 HyClass 115W 1561 106 100 50 0.0 0.0 43.2 Dimension 1537 104 70 54 0.0 1.7 44.4 CWH095 1537 104 80 50 0.0 0.0 43.5 KS9135 1532 104 80 54 0.0 1.7 42.4 45D03 1532 104 67 51 0.0 0.0 43.6 Wichita 1532 104 87 51 0.0 0.0 40.6 Wichita 1532 104 87 54 0.0 1.7 42.4 ACCURIOR 1527 103 83 54 0.0 0.0 43.6 Taurus 1527 103 83 57 0.0 0.0 43.4 DKW13-69 1522 103 87 58 0.0 0.0 0.0 41.0 ARC2180-1 1487 101 80 52 0.0 0.0 42.0 KS3074 1477 100 80 53 0.0 0.0 41.6 AGW14 1467 99 99 97 51 0.0 0.0 44.8 Hybrisurf 1452 99 99 97 51 0.0 0.0 43.8 Baldur 1423 99 98 70 54 0.0 0.0 43.8 Baldur 1423 99 98 70 56 0.0 0.0 43.8 CWH081 1418 99 98 77 56 0.0 0.0 43.8 CWH081 1418 99 99 97 51 0.0 0.0 43.8 CWH081 1418 99 99 97 51 0.0 0.0 43.5 Forza 1393 92 80 48 0.0 0.0 42.5 Satori 1353 92 80 48 0.0 0.0 42.5 Satori 1353 92 80 48 0.0 0.0 42.5 Satori 1353 92 80 48 0.0 0.0 42.6 DKW45-10 1333 90 770 46 1.7 0.0 40.6 HyClass 107W 1318 60 8.3 0.0 41.3	CWH111	1660			112	90			52	0.0	0.0	43.8
KS3132 1606 109 97 55 0.0 0.0 42.7 KS4085 1591 108 77 60 0.0 0.0 41.4 Hybridstar 1566 106 90 54 0.0 0.0 43.5 HyClass 115W 1561 106 100 50 0.0 0.0 43.2 Dimension 1537 104 70 54 0.0 1.7 44.4 CWH095 1537 104 80 50 0.0 0.0 43.5 KS9135 1532 104 73 54 0.0 1.7 42.4 45D03 1532 104 67 51 0.0 0.0 40.6 Wichita 1532 104 87 51 0.0 0.0 39.6 Taurus 1527 103 83 57 0.0 0.0 39.6 Taurus 1527 103 83 55 0.0 0.0 0.0 43.4 ARC2180-1 1487 101 80 52 0.0 0.0 42.0 KS3074 1477 101 80 52 0.0 0.0 42.0 KS3074 1477 100 80 52 0.0 0.0 42.0 KS3074 1467 99 97 51 0.0 0.0 43.8 Hybrisurf 1452 98 100 54 0.0 0.0 43.8 Baldur 1423 99 97 56 0.0 0.0 43.8 Baldur 1423 98 70 56 0.0 0.0 43.5 FOTZA 1393 99 97 51 0.0 0.0 43.6 CWH081 1418 96 70 51 0.0 0.0 43.6 CWH081 1418 97 87 55 0.0 0.0 0.0 43.5 FOTZA 1393 99 97 51 0.0 0.0 43.5 FOTZA 1393 99 97 51 0.0 0.0 43.5 FOTZA 1393 99 97 48 0.0 0.0 42.5 Satori 1353 92 80 43 0.0 0.0 42.6 DKW45-10 1333 91 90 70 46 1.7 0.0 40.6 HyClass 107W 1318 99 97 46 1.7 0.0 40.6	KS3254	1660			112	87			57	0.0	0.0	42.7
KS4085 1591 108 77 60 0.0 0.0 41.4 Hybridstar 1566 106 90 54 0.0 0.0 43.5 HyClass 115W 1561 106 100 50 0.0 0.0 43.2 Dimension 1537 104 70 54 0.0 1.7 44.4 CWH095 1537 104 80 50 0.0 0.0 43.5 KS9135 1532 104 67 54 0.0 1.7 42.4 45D03 1532 104 87 51 0.0 0.0 40.6 Wichita 1532 103 83 57 0.0 0.0 43.4 DKW13-69	ARC98015	1636			111	77			59	0.0	0.0	40.9
Hybridstar 1566 106 90 54 0.0 0.0 43.5 HyClass 115W 1561 106 100 50 0.0 0.0 43.2 Dimension 1537 104 70 54 0.0 1.7 44.4 CWH095 1537 104 80 50 0.0 0.0 43.5 KS9135 1532 104 67 51 0.0 0.0 40.6 Wichita 1532 104 87 51 0.0 0.0 40.6 Wichita 1532 104 87 54 0.0 0.0 40.6 Taurus 1527 103 83 57 0.0 0.0 43.4 DKW13-69 1522 103 87 58 0.0	KS3132	1606			109	97			55	0.0	0.0	42.7
HyClass 115W 1561 106 100 50 0.0 0.0 43.2 Dimension 1537 104 70 54 0.0 1.7 44.4 CWH095 1537 104 80 50 0.0 0.0 43.5 KS9135 1532 104 67 54 0.0 1.7 42.4 45D03 1532 104 67 51 0.0 0.0 40.6 Wichita 1532 104 87 54 0.0 0.0 40.6 Taurus 1527 103 83 57 0.0 0.0 43.4 DKW13-69 1522 103 87 58 0.0 0.0 41.0 KS3074 1477 <td< td=""><td>KS4085</td><td>1591</td><td></td><td></td><td>108</td><td>77</td><td></td><td></td><td>60</td><td>0.0</td><td>0.0</td><td>41.4</td></td<>	KS4085	1591			108	77			60	0.0	0.0	41.4
Dimension 1537 104 70 54 0.0 1.7 44.4 CWH095 1537 104 80 50 0.0 0.0 43.5 KS9135 1532 104 67 54 0.0 1.7 42.4 45D03 1532 104 67 51 0.0 0.0 40.6 Wichita 1532 104 87 54 0.0 0.0 40.6 Wichita 1522 103 83 57 0.0 0.0 43.4 DKW13-69 1522 103 87 58 0.0 0.0 41.0 ARC2180-1 1487 101 80 53	Hybridstar	1566			106	90			54	0.0	0.0	43.5
CWH095 1537 104 80 50 0.0 0.0 43.5 KS9135 1532 104 73 54 0.0 1.7 42.4 45D03 1532 104 67 51 0.0 0.0 40.6 Wichita 1532 104 87 54 0.0 0.0 39.6 Taurus 1527 103 83 57 0.0 0.0 43.4 DKW13-69 1522 103 87 58 0.0 0.0 41.0 ARC2180-1 1487 101 80 52 0.0 0.0 42.0 KS3074 1477 100 80 53 0.0 0.0 45.2 Ceres 1462 99 97 51 0.0	HyClass 115W	1561			106	100			50	0.0	0.0	43.2
KS9135 1532 104 73 54 0.0 1.7 42.4 45D03 1532 104 67 51 0.0 0.0 40.6 Wichita 1532 104 87 54 0.0 0.0 39.6 Taurus 1527 103 83 57 0.0 0.0 43.4 DKW13-69 1522 103 87 58 0.0 0.0 41.0 ARC2180-1 1487 101 80 52 0.0 0.0 42.0 KS3074 1477 100 80 53 0.0 0.0 41.6 46W14 1467 99 97 51 0.0 0.0 45.2 Ceres 1462 99 97 54 0.0 0.0 41.8 Hybrisurf 1452 98 100 48 0.0 0.0 47.1 46W99 1447 98 57 56 0.0 0.0 43.2 BSX-567 1428 97 87 48 0.0 0.0 43.8 Baldur 1423 96 97 50 0.0 0.0 43.6 CWH081 1418 96 97 50 0.0 0.0 43.5 Satori 1353 99 97 0 48 0.0 0.0 43.2 Virginia 1348 99 97 0 48 0.0 0.0 42.5 Satori 1353 99 97 0 48 0.0 0.0 43.2 Virginia 1348 99 90 70 48 0.0 0.0 43.2 Virginia 1348 99 91 90 45 0.0 0.0 43.2 Virginia 1348 99 91 90 45 0.0 0.0 42.6 DKW45-10 1333 90 70 46 1.7 0.0 40.6 HyClass 107W 1318 90 70 46 1.7 0.0 40.6 HyClass 107W 1318	Dimension	1537			104	70			54	0.0	1.7	44.4
45D03 1532 104 67 51 0.0 0.0 40.6 Wichita 1532 104 87 54 0.0 0.0 39.6 Taurus 1527 103 83 57 0.0 0.0 43.4 DKW13-69 1522 103 87 58 0.0 0.0 41.0 ARC2180-1 1487 101 80 52 0.0 0.0 42.0 KS3074 1477 100 80 53 0.0 0.0 41.6 46W14 1467 99 97 51 0.0 0.0 45.2 Ceres 1462 98 100 54 0.0 0.0 47.1 46W99	CWH095	1537			104	80			50	0.0	0.0	43.5
Wichita 1532 104 87 54 0.0 0.0 39.6 Taurus 1527 103 83 57 0.0 0.0 43.4 DKW13-69 1522 103 87 58 0.0 0.0 41.0 ARC2180-1 1487 101 80 52 0.0 0.0 42.0 KS3074 1477 100 80 53 0.0 0.0 41.6 46W14 1467 99 97 51 0.0 0.0 45.2 Ceres 1462 99 97 54 0.0 0.0 41.8 Hybrisurf 1452 98 57 56 0.0 0.0 43.2 BSX-567 <td>KS9135</td> <td>1532</td> <td></td> <td></td> <td>104</td> <td>73</td> <td></td> <td></td> <td>54</td> <td>0.0</td> <td>1.7</td> <td>42.4</td>	KS9135	1532			104	73			54	0.0	1.7	42.4
Taurus 1527 103 83 57 0.0 0.0 43.4 DKW13-69 1522 103 87 58 0.0 0.0 41.0 ARC2180-1 1487 101 80 52 0.0 0.0 42.0 KS3074 1477 100 80 53 0.0 0.0 41.6 46W14 1467 99 97 51 0.0 0.0 45.2 Ceres 1462 99 97 54 0.0 0.0 41.8 Hybrisurf 1452 98 100 48 0.0 0.0 47.1 46W99 1447 98 57 56 0.0 0.0 0.0 43.2	45D03	1532			104	67			51	0.0	0.0	40.6
DKW13-69 1522 103 87 58 0.0 0.0 41.0 ARC2180-1 1487 101 80 52 0.0 0.0 42.0 KS3074 1477 100 80 53 0.0 0.0 41.6 46W14 1467 99 97 51 0.0 0.0 45.2 Ceres 1462 99 97 54 0.0 0.0 41.8 Hybrisurf 1452 98 100 48 0.0 0.0 47.1 46W99 1447 98 57 56 0.0 0.0 40.8 Baldur 1428 97 87 51 0.0 0.0 40.8 CWH081	Wichita	1532			104	87			54	0.0	0.0	39.6
ARC2180-1 1487 101 80 52 0.0 0.0 42.0 KS3074 1477 100 80 53 0.0 0.0 41.6 46W14 1467 99 97 51 0.0 0.0 45.2 Ceres 1462 99 97 54 0.0 0.0 41.8 Hybrisurf 1452 98 100 56 0.0 0.0 47.1 46W99 1447 98 57 56 0.0 0.0 43.2 BSX-567 1428 97 87 48 0.0 0.0 40.8 Baldur 1423 96 70 51 0.0 0.0 43.6 CWH081 1418 96 97 50 0.0 0.0 43.5 Forza 1393 94 90 50 0.0 0.0 43.5 Satori 1353 92 80 43 0.0 0.0 42.5 Satori 1348 91 90 45 0.0 0.0 42.6 DKW45-10 1333 90 70 46 1.7 0.0 40.6 HyClass 107W 1318 89 63 60 8.3 0.0 41.3	Taurus	1527			103	83			57	0.0	0.0	43.4
KS3074 1477 100 80 53 0.0 0.0 41.6 46W14 1467 99 97 51 0.0 0.0 45.2 Ceres 1462 99 97 54 0.0 0.0 41.8 Hybrisurf 1452 98 100 56 0.0 0.0 47.1 46W99 1447 98 57 56 0.0 0.0 43.2 BSX-567 1428 97 87 48 0.0 0.0 40.8 Baldur 1423 96 70 51 0.0 0.0 43.6 CWH081 1418 96 97 50 0.0 0.0 43.5 Forza 1393 94 90 50 0.0 0.0 43.5 Satori 1353 92 80 43 0.0 0.0 43.2 Virginia 1348 91 90 45 0.0 0.0 42.6 DKW45-10 1333 90 70 46 1.7 0.0 40.6 HyClass 107W 1318 89 63 60 8.3 0.0 41.3	DKW13-69	1522			103	87			58	0.0	0.0	41.0
46W14 1467 99 97 51 0.0 0.0 45.2 Ceres 1462 99 97 54 0.0 0.0 41.8 Hybrisurf 1452 98 100 48 0.0 0.0 47.1 46W99 1447 98 57 56 0.0 0.0 43.2 BSX-567 1428 97 87 48 0.0 0.0 40.8 Baldur 1423 96 70 51 0.0 0.0 43.6 CWH081 1418 96 97 50 0.0 0.0 43.5 Forza 1393 94 90 43 0.0 0.0 42.5 Satori	ARC2180-1	1487			101	80			52	0.0	0.0	42.0
Ceres 1462 99 97 54 0.0 0.0 41.8 Hybrisurf 1452 98 100 48 0.0 0.0 47.1 46W99 1447 98 57 56 0.0 0.0 43.2 BSX-567 1428 97 87 56 0.0 0.0 40.8 Baldur 1423 96 70 51 0.0 0.0 43.6 CWH081 1418 96 97 50 0.0 0.0 43.5 Forza 1393 94 90 43 0.0 0.0 42.5 Satori 1353 91 90 48 0.0 0.0 42.6 DKW45-10 <	KS3074	1477			100	80			53	0.0	0.0	41.6
Hybrisurf 1452 98 100 48 0.0 0.0 47.1 46W99 1447 98 57 56 0.0 0.0 43.2 BSX-567 1428 97 87 48 0.0 0.0 40.8 Baldur 1423 96 70 51 0.0 0.0 43.6 CWH081 1418 96 97 50 0.0 0.0 43.5 Forza 1393 94 90 43 0.0 0.0 42.5 Satori 1353 92 80 48 0.0 0.0 43.2 Virginia 1348 91 90 46 1.7 0.0 40.6 HyClass 107W	46W14	1467			99	97			51	0.0	0.0	45.2
46W99 1447 98 57 56 0.0 0.0 43.2 BSX-567 1428 97 87 48 0.0 0.0 40.8 Baldur 1423 96 70 51 0.0 0.0 43.6 CWH081 1418 96 97 50 0.0 0.0 0.0 43.5 Forza 1393 94 90 43 0.0 0.0 42.5 Satori 1353 92 80 48 0.0 0.0 43.2 Virginia 1348 91 90 45 0.0 0.0 42.6 DKW45-10 1333 89 63 60 8.3 0.0 41.3	Ceres	1462			99	97			54	0.0	0.0	41.8
BSX-567 1428 97 87 48 0.0 0.0 40.8 Baldur 1423 96 70 51 0.0 0.0 43.6 CWH081 1418 96 97 50 0.0 0.0 43.5 Forza 1393 94 90 43 0.0 0.0 42.5 Satori 1353 92 80 48 0.0 0.0 42.2 Virginia 1348 91 90 45 0.0 0.0 42.6 DKW45-10 1333 90 70 46 1.7 0.0 40.6 HyClass 107W 1318 89 63 60 8.3 0.0 41.3	Hybrisurf	1452			98	100			48	0.0	0.0	47.1
Baldur 1423 96 70 51 0.0 0.0 43.6 CWH081 1418 96 97 50 0.0 0.0 43.5 Forza 1393 94 90 43 0.0 0.0 42.5 Satori 1353 92 80 48 0.0 0.0 43.2 Virginia 1348 91 90 45 0.0 0.0 42.6 DKW45-10 1333 90 70 46 1.7 0.0 40.6 HyClass 107W 1318 89 63 60 8.3 0.0 41.3	46W99	1447			98	57			56	0.0	0.0	43.2
CWH081 1418 96 97 50 0.0 0.0 43.5 Forza 1393 94 90 43 0.0 0.0 42.5 Satori 1353 92 80 48 0.0 0.0 43.2 Virginia 1348 91 90 45 0.0 0.0 42.6 DKW45-10 1333 90 70 46 1.7 0.0 40.6 HyClass 107W 1318 89 63 60 8.3 0.0 41.3	BSX-567	1428			97	87			48	0.0	0.0	40.8
CWH081 1418 96 97 50 0.0 0.0 43.5 Forza 1393 94 90 43 0.0 0.0 42.5 Satori 1353 92 80 48 0.0 0.0 43.2 Virginia 1348 91 90 45 0.0 0.0 42.6 DKW45-10 1333 90 70 46 1.7 0.0 40.6 HyClass 107W 1318 89 63 60 8.3 0.0 41.3	Baldur	1423			96	70			51	0.0	0.0	43.6
Forza 1393 94 90 43 0.0 0.0 42.5 Satori 1353 92 80 48 0.0 0.0 43.2 Virginia 1348 91 90 45 0.0 0.0 42.6 DKW45-10 1333 90 70 46 1.7 0.0 40.6 HyClass 107W 1318 89 63 60 8.3 0.0 41.3	CWH081	1418				97						
Satori 1353 92 80 48 0.0 0.0 43.2 Virginia 1348 91 90 45 0.0 0.0 42.6 DKW45-10 1333 90 70 46 1.7 0.0 40.6 HyClass 107W 1318 89 63 60 8.3 0.0 41.3	Forza	1393			94	90			43			42.5
Virginia 1348 91 90 45 0.0 0.0 42.6 DKW45-10 1333 90 70 46 1.7 0.0 40.6 HyClass 107W 1318 89 63 60 8.3 0.0 41.3	Satori	1353			92	80			48			
DKW45-10 1333 90 70 46 1.7 0.0 40.6 HyClass 107W 1318 89 63 60 8.3 0.0 41.3	Virginia	1348				90			45			
HyClass 107W 1318 89 63 60 8.3 0.0 41.3	DKW45-10	1333			90				46		0.0	
·	HyClass 107W	1318			89	63			60	8.3	0.0	41.3
	KS4022				89							42.3

Table 6. Results from the 2008 National Winter Canola Variety Trial at Fletcher, NC

				Yield (% of				Plant			
Name		Yield (II	bs/a)	test avg.)	Wir	ter Sur	vival (%)	Height	Lodging	Shatter	Oil*
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(in.)	(%)	(%)	(%)
HyClass 110W	1284			87	100			47	10.0	0.0	42.0
Sumner	1254			85	90			49	0.0	1.7	42.0
DKW46-15	1239			84	83			48	10.0	0.0	41.3
BSX-501	1234			83	87			56	0.0	0.0	41.1
DKW41-10	1229			83	87			49	1.7	0.0	40.7
Safran	1160			78	83			54	0.0	0.0	40.6
Hornet	1130			76	77			58	3.3	0.0	42.0
Rally	1125			76	77			49	0.0	0.0	38.9
Flash	1120			76	73			61	1.7	0.0	41.5
CWH116	1095			74	100			46	0.0	0.0	44.6
NPZ0791RR	1095			74	100			51	0.0	0.0	44.1
Sitro	1006			68	83			53	0.0	0.0	44.0
Jetton	833			56	77			58	0.0	0.0	41.2
Mean	1478				86			53	0.9	0.1	42.3
CV	21				18			8	499.7	616.8	3.7
LSD (0.05)	506				NS			7	NS	NS	3.2

Bold - Superior LSD Group - Unless two entries differ by more than the LSD, little confidence can be placed in one being superior to the other. *Oil percentages were mathematically adjusted because some samples had too few seeds for standard analysis.

Plymouth, North Carolina

Kim Tungate and Nicholas George North Carolina State University

Planted: 10/11/2008 at 5 lbs/a in 6-in. rows

Harvested: 6/16/2008

Herbicides: Glyphosate burndown

Insecticides: None
Irrigation: None
Previous Crop: Potatoes
Soil Test: pH=4.7

Fertilizer: 143-0-0 lbs N-P-K fertilizer in fall Soil Type: Portsmouth fine sandy loam

Elevation: Latitude:

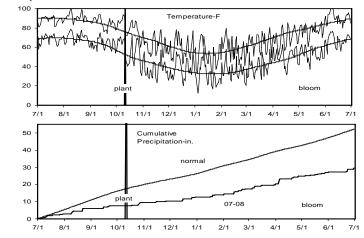


Table 7. Results from the 2008 National Winter Canola Variety Trial at Plymouth, NC

				Yield (% of					Plant			
Line		Yield (I	bs/a)	test avg.)	Wir	nter Surv	ival (%)	Maturity	Height	Lodging	Shatter	Oil*
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(%)	(in.)	(%)	(%)	(%)
46W14	2226			176	53			100	57	0.0	0.0	41.5
Dimension	2057			162	37			100	53	0.0	1.7	42.5
NPZ0791RR	1700			134	53			100	52	0.0	0.0	40.8
Forza	1690			133	60			100	50	0.0	0.0	39.6
HyClass 110W	1685			133	37			100	50	0.0	1.7	38.2
DSV07100	1646			130	47			100	51	0.0	0.0	42.0
CWH095	1641			129	93			100	55	0.0	0.0	40.1
HyClass 154W	1611			127	43			98	55	0.0	0.0	40.3
Baldur	1591			126	47			100	56	0.0	1.7	38.6
DKW47-15	1591			126	73			100	54	1.7	0.0	41.0
Taurus	1586			125	33			98	52	0.0	0.0	40.8
Wichita	1556			123	37			100	56	0.0	0.0	40.8
KS4022	1522			120	67			98	56	0.0	0.0	38.4
Kronos	1512			119	77			100	57	0.0	0.0	38.6
CWH111	1472			116	50			100	44	0.0	0.0	41.3
Hybrigold	1472			116	30			100	52	0.0	0.0	40.6
Visby	1457			115	60			100	52	0.0	0.0	40.3
Satori	1432			113	33			100	45	0.0	0.0	40.3
KS3077	1393			110	60			100	55	0.0	0.0	39.8
KS4158	1393			110	63			100	54	0.0	0.0	40.6
CWH081	1383			109	43			98	50	1.7	0.0	41.3
KS3302	1333			105	23			100	47	1.7	0.0	40.8
ARC98015	1328			105	43			100	59	0.0	0.0	41.3
KS9135	1328			105	27			98	56	0.0	0.0	38.9
DKW41-10	1294			102	43			98	43	0.0	0.0	40.1
KS3074	1294			102	30			100	49	10.0	0.0	40.1
DKW45-10	1284			101	47			98	46	0.0	0.0	39.6
HyClass 115W	1279			101	50			100	43	0.0	0.0	41.3
Hornet	1279			101	50			100	56	1.7	0.0	40.6
BSX-567	1274			101	67			100	51	0.0	0.0	41.3
Safran	1254			99	50			100	56	0.0	0.0	39.1
KS3018	1224			97	50			100	53	1.7	0.0	39.6
KS3254	1224			97	63			98	57	0.0	0.0	39.8
CWH633	1209			95	47			100	53	10.0	0.0	40.3
46W99	1195			94	43			100	52	3.3	0.0	42.2
Flash	1160			92	60			98	57	0.0	0.0	40.8
Virginia	1160			92	77			100	48	0.0	0.0	39.4
45D03	1150			91	53			100	57	18.3	0.0	39.1
Sitro	1120			88	43			98	57	1.7	0.0	39.8
CWH116	1076			85	87			100	47	0.0	0.0	40.6
Hybrisurf	1076			85	53			100	52	0.0	0.0	41.8

Table 7. Results from the 2008 National Winter Canola Variety Trial at Plymouth, NC

				Yield (% of					Plant			
Line		Yield (II	bs/a)	test avg.)	Wir	nter Sur	vival (%)	Maturity	Height	Lodging	Shatter	Oil*
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(%)	(in.)	(%)	(%)	(%)
KS4085	1061			84	57			100	57	0.0	0.0	40.3
KS3132	1006			79	40			97	47	0.0	0.0	40.1
Kadore	1001			79	37			100	44	0.0	0.0	39.1
Sumner	1001			79	27			100	51	3.3	0.0	41.3
ARC2180-1	927			73	53			100	54	0.0	0.0	39.8
Hybridstar	808			64	67			100	52	0.0	0.0	41.3
Ceres	724			57	37			100	47	1.7	0.0	39.8
DKW13-69	719			57	43			100	49	1.7	0.0	40.1
HyClass 107W	714			56	57			100	47	10.0	0.0	38.9
BSX-501	694			55	50			100	52	0.0	0.0	40.6
Rally	679			54	57			100	58	0.0	0.0	39.8
DKW46-15	595			47	53			100	43	3.3	0.0	42.2
Jetton	347			27	33			98	56	0.0	1.7	37.2
Mean	1267				50			100	52	1.3	0.1	40.0
CV	34				61			1	9	368.3	631.9	2.6
LSD (0.05)	692				NS			NS	8	NS	NS	NS

Bold - Superior LSD Group - Unless two entries differ by more than the LSD, little confidence can be placed in one being superior to the other. Maturity is recorded as the percent of plants reaching mature color at harvest. *Oil percentages were mathematically adjusted because some samples had too few seeds for standard analysis.

Petersburg, Virginia

Harbans Bhardwaj, Virginia State University

Planted: 10/2/2007 at 6 lbs/a in 15-in. rows

Harvested: 6/20/2008 Herbicides: Prowl 1.5 pt/a

Insecticides: Karate
Irrigation: None
Previous Crop: White lupin

Soil Test: P=High, K=Medium, pH=6.2

Fertilizer: 100-100-100 lbs N-P-K fertilizer in spring

Soil Type: Abell sandy loam

Elevation: 15 ft Latitude: 37°14'N

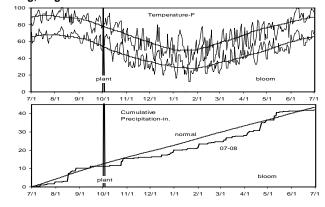


Table 8. Results from the 2008 National Winter Canola Variety Trial at Petersburg, VA

				Yield (% of				Plant			Test	
Name		Yiel	d	test avg.)	Wir	nter Sur	vival (%)	Height	Shatter	Lodging	Weight	Oil
	2008	2007	2-Yr.	2008	2008	2007 2	2-Yr.	(in.)	(%)	(%)	(bu/a)	(%)
Safran	1433			279								39.5
Hybrigold	839	436	637	163								40.4
Hybristar	824			160								39.5
Rally	813	916	865	158								39.7
Sitro	799	656	727	156								38.3
Virginia	787	1096	942	153								37.0
Hybrisurf	777			151								41.6
Flash	776	1030	903	151								40.9
Hornet	745	1266	1005	145								39.6
Dimension	715			139								40.9
CWH633	683			133								39.5
Abilene	640	591	615	125								39.7
CWH111	633			123								39.3
Satori	611			119								40.9
KS4158	609			118								38.9
CWH081	595			116								38.3
Sumner	592	495	543	115								39.8
DKW47-15	590			115								39.2
DKW41-10	576			112								39.5
Forza	575			112								39.6
46W14	550			107								40.3
ARC2180-1	538	672	605	105								38.4
HyClass 154W	532	356	444	104								39.7
KS4022	513	468	490	100								39.1
KS4085	506	521	513	98								38.8
Wichita	502	596	549	98								39.6
KS3077	501	824	662	98								39.0
45D03	494			96								40.8
ARC97018	491	477	484	96								38.1
BSX-501	487			95								38.5
Kronos	477	314	395	93								39.1
DKW13-69	473			92								38.5
Taurus	447	503	475	87								39.4
KS9135	446	576	511	87								38.4
HyClass107W	445			87								38.7
KS3132	442	689	566	86								39.9
KS3074	436	461	448	85								39.7
KS3302	433	387	410	84								39.4
DSV07100	428			83								42.3
CWH116	426			83								41.7
DKW46-15	426			83								40.4
KS3254	407			79								40.6
ARC98015	404	730	567	79								38.8

Table 8. Results from the 2008 National Winter Canola Variety Trial at Petersburg, VA

				Yield (% of				Plant			Test	
Name		Yiel	d	test avg.)	Wir	nter Su	ırvival (%)	Height	Shatter	Lodging	Weight	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(in.)	(%)	(%)	(bu/a)	(%)
Baldur	398	395	396	77								40.6
BSX-567	393			77								36.2
HyClass 110W	391			76								37.7
Ceres	391	522	457	76								39.3
KS3018	390	406	398	76								38.8
46W99	371			72								39.3
Visby	368			72								40.2
ARC97019	366	812	589	71								38.0
HyClass 115W	345			67								39.0
Kadore	319	341	330	62								39.8
KS7436	318	1149	734	62								39.5
ARC98007	306	459	383	60								38.9
DKW45-10	273			53								38.4
NPZ0791RR	251			49								40.2
Jetton	219	622	421	43								37.9
CWH095	171			33								40.1
Plainsman	135	370	253	26								40.8
Mean	514											39.4
CV	38											2.2
LSD (0.05)	315											1.7

Bold - Superior LSD Group - Unless two entries differ by more than the LSD, little confidence can be placed on one being superior to the other.

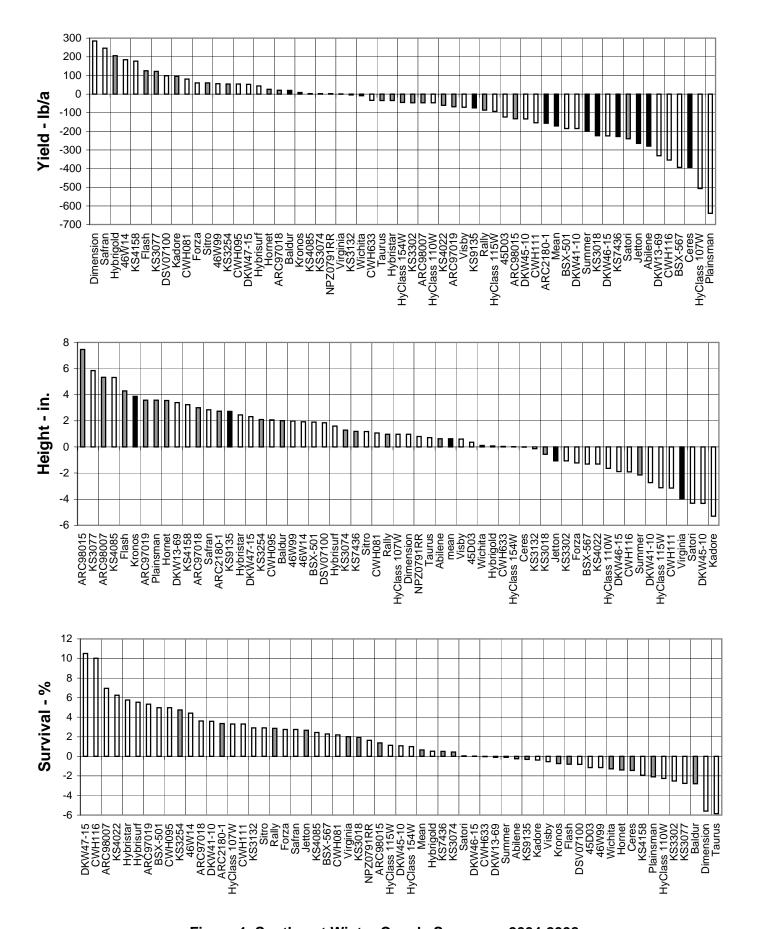
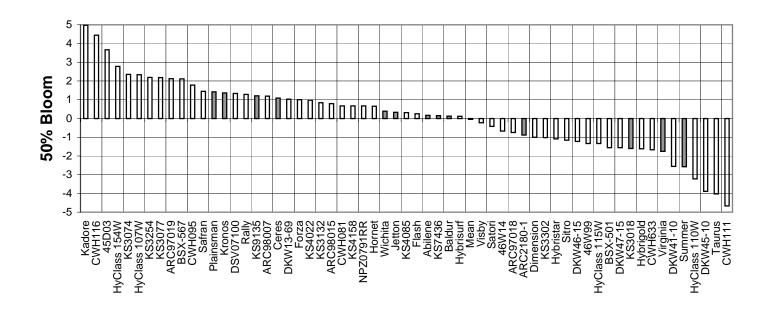
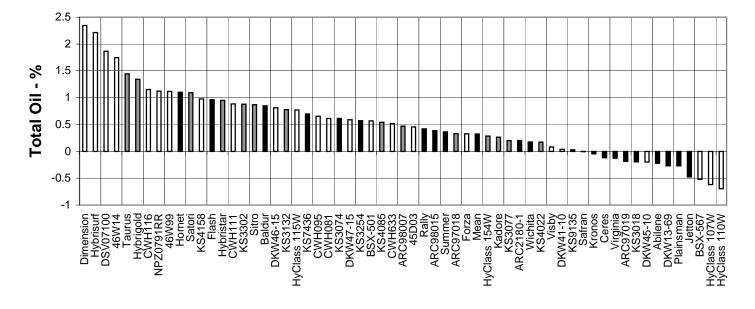




Figure 1. Southeast Winter Canola Summary, 2004-2008.

Note: Values are averages of the differences between each cultivar and the mean of Kronos, Virginia, and Wichita for yield (lbs/a), winter survival (%), plant height (in.), 50% bloom date (days), and total oil content (%). The number of observations for each trait is represented by the different colored bars (as shown at right).

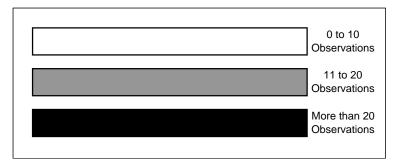


Figure 1. Southeast Winter Canola Summary, 2004-2008 (continued).

Belleville, Illinois

Michael Schmidt and Cathy Schmidt

Southern Illinois University

Planted: 9/13/2007 at 10 lbs/a in 7.5-in. rows

Harvested: 6/25/2008
Herbicides: None
Insecticides: None
Irrigation: None
Previous Crop: Soybean
Soil Test: NA

Fertilizer: 110-0-0 lbs N-P-K fertilizer in spring

Soil Type: Stoy silt loam

Elevation: 415 ft Latitude: 37°47'N

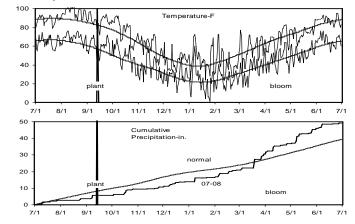


Table 9. Results for the 2008 National Winter Canola Variety Trial at Belleville, IL

Yield (% of

				Yield (% of				Fall	Plant			
Name		Yield		test avg)	Win	ter Surv	/ival (%)	Stand	Height	Shatter	Lodging	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(%)	(in.)	(%)	(1-5)	(%)
Sitro	3033			155	100			98	47		1.3	39.9
Visby	2985			152	100			93	46		1.3	37.4
Taurus	2808			143	100			100	47		1.0	39.8
Safran	2791			143	100			92	48		1.0	36.7
Kadore	2789			142	100			97	42		1.0	36.4
Flash	2694			138	100			97	47		1.3	40.1
Virginia	2638			135	100			98	45		1.3	37.0
Hornet	2495			127	100			98	47		1.7	39.7
NPZ0791RR	2472			126	100			93	49		1.7	38.7
Hybrigold	2443			125	100			93	46		1.3	38.4
Forza	2437			124	100			95	42		1.0	36.5
KS3254	2426			124	100			95	47		1.0	36.9
CWH081	2388			122	100			90	44		1.0	36.5
BSX-501	2269			116	100			97	43		1.7	36.4
Hybristar	2260			115	100			98	44		1.3	36.3
KS9135	2220			113	100			93	49		1.3	36.6
Wichita	2199			112	100			95	46		1.3	36.3
Dimension	2164			111	100			97	47		1.0	38.7
BSX-567	2164			111	100			90	49		1.3	35.1
DSV07100	2123			108	100			93	45		1.3	39.7
CWH111	2092			107	100			100	44		2.0	37.2
HyClass 110W	2090			107	100			92	40		1.7	36.2
KS4158	2076			106	100			100	45		1.7	37.4
Baldur	2070			106	100			95	44		1.3	37.9
ARC2180-1	2060			105	100			97	49		1.3	37.4
HyClass 154W	2052			105	100			98	47		1.0	37.5
Kronos	2051			105	100			95	46		1.0	35.8
DKW13-69	2031			104	100			95	46		1.0	36.6
KS4085	2020			103	100			92	49		1.3	36.4
ARC97018	2009			103	100			92	48		1.0	37.7
KS3074	2000			102	100			97	45		1.7	37.2
Hybrisurf	1969			101	100			98	47		1.7	39.7
HyClass 115W	1967			100	100			92	44		2.3	37.3
ARC98007	1962			100	100			93	50		1.0	37.3
Rally	1942			99	100			97	48		1.3	38.0
ARC98015	1926			98	100			92	52		1.0	37.2
Satori	1913			98	100			88	42		1.0	36.4
ARC97019	1883			96	100			90	49		1.0	36.4
KS4112	1832			94	100			88	45		1.3	37.0
KS4106	1816			93	100			93	49		1.3	37.6
DKW46-15	1769			90	100			88	44		1.7	38.3
CWH633	1729			88	100			93	46		1.7	36.5
	_								-			

Table 9. Results for the 2008 National Winter Canola Variety Trial at Belleville, IL

				Yield (% of				Fall	Plant			
Name		Yield		test avg)	Win	ter Surv	vival (%)	Stand	Height	Shatter	Lodging	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(%)	(in.)	(%)	(1-5)	(%)
Ceres	1664			85	100			90	47		2.3	36.3
KS4036	1599			82	100			93	45		2.3	36.2
KS3302	1588			81	100			92	43		2.3	37.7
CWH116	1581			81	83			65	44		1.3	37.6
KS3077	1521			78	100			98	45		3.7	35.7
Jetton	1512			77	50			13	55		2.3	36.0
KS4022	1463			75	100			97	40		1.7	35.7
Sumner	1445			74	100			88	39		1.7	36.5
Abilene	1389			71	100			97	42		2.3	35.0
Plainsman	1375			70	67			40	45		2.3	36.0
KS7436	1359			69	100			90	43		2.3	36.7
CWH095	1355			69	100			93	41		2.3	36.6
DKW47-15	1333			68	100			93	41		1.7	36.6
KS3018	1315			67	100			92	48		3.3	35.7
KS3132	1303			67	100			98	43		2.3	36.4
DKW45-10	1042			53	100			95	38		3.0	35.7
HyClass 107W	963			49	100			92	46		2.0	35.9
DKW41-10	656			33	67			58	39		3.0	36.4
Mean	1959				98			91	45		1.6	37.1
CV	28				9			14	10		44.9	2.3
LSD (0.05)	882				15			20	7		1.2	1.7

Bold - Superior LSD Group - Unless two entries differ by more than the LSD, little confidence can be placed in one being superior to the other.

Carbondale, Illinois

Michael Schmidt and Cathy Schmidt

Southern Illinois University

Planted: 9/12/2007 at 10 lbs/a in 7.5-in. rows

Harvested: 6/17/2008
Herbicides: None
Insecticides: None
Irrigation: None
Previous Crop: Corn silage

Soil Test: NA

Fertilizer: 36-92-120 lbs N-P-K fertilizer in fall

115-0-0 lbs N-P-K fertilizer in spring

Soil Type: Stoy silt loam

Elevation: 400 ft Latitude: 38°30'N

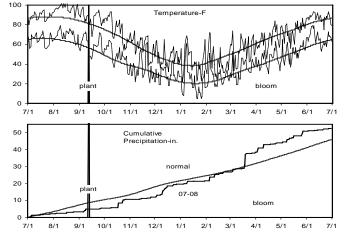


Table 10. Results from the 2008 National Winter Canola Variety Trial at Carbondale, IL

				Yield % of				Fall	Plant			
		Yield (lb	s/a)	test avg.		nter Sur	vival (%)	Stand	Height	Shatter	Lodging	Oil
Name	2008	2007	2-Yr.	2008	2008	2007	2-Ýr.	(0-10)	(in.)	(%)	(0-5)	(%)
Safran	2744			149				9.3	52		1.0	39.3
CWH111	2620			143				9.7	47		2.0	41.4
Flash	2477	1454	1965	135				9.7	46		1.2	42.3
Hybrigold	2421	2122	2271	132				9.7	50		1.0	41.2
Kadore	2388	2613	2501	130				10.0	46		1.0	38.0
Sitro	2294	971	1633	125				9.3	43		1.0	42.9
Dimension	2251			122				10.0	45		1.3	43.6
KS4022	2222	2218	2220	121				10.0	43		1.5	41.7
CWH095	2217			121				10.0	48		1.3	39.4
Virginia	2210	2052	2131	120				10.0	44		1.7	39.9
KS3254	2201	2356	2278	120				9.3	47		1.3	40.9
Visby	2201			120				10.0	48		1.2	40.2
CWH081	2190			119				10.0	48		1.0	39.1
Taurus	2146	1813	1980	117				10.0	47		1.7	40.7
KS9135	2123	2284	2203	115				10.0	51		1.7	38.4
HyClass 115W	2105			115				9.7	50		1.2	40.4
KS3302	2101	2336	2219	114				10.0	46		1.3	40.8
Hornet	2078	1624	1851	113				10.0	49		1.3	41.5
Rally	2074	1885	1980	113				9.0	46		1.3	38.4
DSV07100	2009			109				10.0	45		1.3	42.6
KS4112	1984			108				9.7	50		1.2	40.5
Hybristar	1984	1673	1828	108				10.0	50		2.2	40.2
Baldur	1971	1191	1581	107				10.0	48		2.0	40.7
KS3132	1969	2443	2206	107				9.3	48		1.3	39.5
KS4106	1955			106				9.7	51		1.2	40.3
KS4158	1951			106				10.0	44		1.3	41.1
DKW47-15	1928			105				10.0	49		1.7	39.7
KS7436	1920	2340	2130	104				10.0	48		1.3	40.0
KS3077	1881	2627	2254	102				10.0	47		1.3	40.0
KS3018	1877	1835	1856	102				9.0	51		1.2	39.1
HyClass 154W	1863			101				10.0	46		1.5	39.4
CWH633	1805			98				9.3	53		1.7	39.9
ARC97018	1774	1993	1884	97				10.0	45		1.5	41.0
KS4085	1772	2054	1913	96				10.0	48		1.2	39.7
Wichita	1733	1771	1752	94				10.0	46		1.8	39.6
Ceres	1722	1757	1739	94				10.0	45		2.5	39.4
DKW46-15	1696			92				9.0	49		2.7	41.5
ARC2180-1	1696	1923	1810	92				9.7	48		1.7	40.7
BSX-501	1691			92				9.7	48		1.8	39.1
KS3074	1662	2256	1959	90				10.0	47		2.0	39.9
HyClass 110W	1662			90				10.0	45		2.7	39.6

Table 10. Results from the 2008 National Winter Canola Variety Trial at Carbondale, IL

				Yield % of				Fall	Plant			
		Yield (lb	s/a)	test avg.	Wir	nter Sur	vival (%)	Stand	Height	Shatter	Lodging	Oil
Name	2008	2007	2-Yr.	2008	2008	2007	2-Ýr.	(0-10)	(in.)	(%)	(0-5)	(%)
ARC98015	1657	2018	1837	90				10.0	54		2.0	40.3
Hybrisurf	1649			90				10.0	48		1.2	42.1
NPZ0791RR	1633			89				9.7	45		1.7	41.6
KS4036	1624			88				10.0	41		1.8	40.2
ARC97019	1615	1951	1783	88				9.3	47		1.5	40.3
ARC98007	1613	1889	1751	88				9.0	48		1.5	39.8
Forza	1601			87				7.3	46		1.2	38.4
DKW13-69	1566			85				9.7	46		2.2	40.0
Sumner	1557	1799	1678	85				10.0	48		1.2	40.1
Abilene	1494	1326	1410	81				9.7	50		3.7	38.7
CWH116	1451			79				10.0	41		1.2	39.4
DKW45-10	1382			75				10.0	41		1.8	41.0
Kronos	1351	1326	1339	74				10.0	48		2.3	39.8
DKW41-10	1304			71				9.7	45		2.8	40.0
HyClass 107W	1288			70				8.0	49		2.2	39.3
Satori	1214	915	1065	66				9.3	39		2.3	40.6
BSX-567	936			51				8.7	44		3.7	36.8
Jetton	907	1947	1427	49				2.0	50		1.7	36.7
Plainsman	876	1600	1238	48				2.3	53		1.5	36.0
Mean	1838							9.4	47		1.7	40.1
CV	18							8.9	9		30.6	2.4
LSD (0.05)	536							1.4	7		8.0	2.0

Bold - Superior LSD Group - Unless two entries differ by more than the LSD, little confidence can be placed in one being superior to the other.

Fred Iutzi and Winthrop Phippen Western Illinois Univeristy

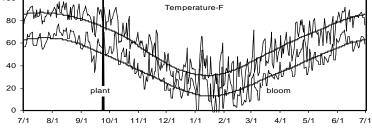
Planted: 9/25/2007 at 5 lbs/a in 7.5-in. rows

Harvested: 7/3/2008

Herbicides: Treflan HFP, 1.5 pt/a

Insecticides: None
Irrigation: None
Previous Crop: Soybean

Soil Test: P=146 ppm, K=356 ppm, and pH= 7 Fertilizer: 19-0-37 lbs N-P-K fertilizer in fall


124-0-0 lbs N-P-K fertilizer in spring

Soil Type: Ipava silt loam

Elevation: 700 ft Latitude: 40°48'N

Comments:

Macomb, Illinois Temperature-F

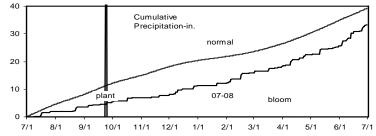


Table 11. Results for the 2008 Winter Canola Variety Trial at Macomb, IL

				Yield (% of								
Line		Yield (lb	s/a)	test avg.)	Wir	nter Survi	ival (%)	Shatter	Lodging	Moisture	Test Weight	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(%)	(%)	(decimal)	(lbs/bu)	(%)
Baldur	2515			124						0.29	52.3	38.5
Sitro	2294			113						0.23	54.1	37.3
Kronos	2223			109						0.32	52.6	36.6
Virgina	2171			107						0.31	51.2	38.5
Wichita	2087			103						0.22	54.0	36.7
Sumner	2044			101						0.27	53.0	37.5
DKW13-69	1788			88						0.30	52.6	37.1
KS3074	1604			79						0.29	53.0	36.9
KS9135	1575			77						0.27	52.9	36.6
Plainsman												
Mean	2033									0.28	52.9	37.3
CV	26									13.10	1.9	1.7
LSD (0.05)	NS										NS	1.1

Bold - Superior LSD Group - Unless two entries differ by more than the LSD, little confidence can be placed in one being superior to the other. Yields adjusted to 9% moisture.

Columbia City, Indiana

Ellsworth Christmas, Purdue University

Planted: 9/6/2007 at 5 lbs/a in 6-in. rows

Harvested: 7/10/2008

Herbicides: Trifluralin 3.5 pts/a

Insecticides: None Irrigation: None Previous Crop: Wheat

Soil Test: P=41 ppm, K=121 ppm, pH= 6.2 Fertilizer: 30-60-60 lbs N-P-K fertilizer in fall

120-0-0 lbs N-P-K fertilizer in spring

Soil Type: Haskins loam

Elevation: 837 ft Latitude: 41°10'N

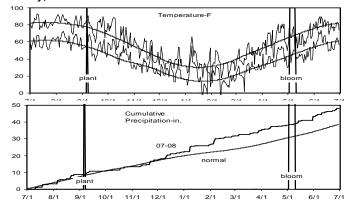


Table 12. Results from the 2008 National Winter Canola Variety Trial at Columbia City, IN

				Yield (% of				Fall	Plant	50%			Test	
Name		∕ield (lk	os/a)	test avg.)	Wint		vival (%)	Stand	Height	Bloom	Maturity	Moisture	Weight	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(0-10)	(in.)	(d)	(d)	(%)	(lbs/bu)	(%)
KS4022	2621			130	94			5.8	43	127.0	170.0	12.8	49.9	41.1
KS4036 ^a	2498			124	77			6.7	42	126.0	171.0	10.8	51.4	41.2
CWH081	2468			123	67			6.3	41	126.3	172.0	13.3	49.8	41.7
CWH095	2402			119	87			5.4	42	125.3	173.3	12.8	50.1	41.9
Wichita	2336			116	64			7.1	42	126.0	167.3	11.5	51.3	40.7
KS3254	2307			115	73			6.3	40	127.3	173.3	13.1	49.5	42.5
KS4106 ^a	2306			115	76			6.3	46	126.7	171.0	12.0	50.5	41.9
HyClass 115W	2301			114	80			6.3	38	123.0	165.3	11.1	51.5	41.1
Sitro	2287			114	37			7.1	45	127.3	174.3	12.9	49.9	41.7
KS3132	2264			113	92			5.9	43	126.0	169.7	10.9	51.4	41.6
KS3302	2251			112	92			5.4	40	123.7	170.7	11.5	50.7	42.9
KS7436	2248			112	82			6.3	40	126.7	170.3	10.9	51.4	42.6
KS3018	2244			112	93			5.4	42	126.3	172.0	11.0	51.5	41.0
KS4085	2209			110	70			6.7	45	126.3	171.3	12.5	50.2	41.5
KS4158	2196			109	63			7.1	41	126.0	172.0	13.1	49.4	42.9
Safran	2194			109	35			7.1	42	128.0	178.0	15.0	48.7	41.1
BSX-501	2169			108	53			6.3	43	127.7	172.7	13.4	50.1	39.3
BSX-567	2147			107	67			5.8	42	127.3	170.0	9.7	53.2	40.4
KS3074	2146			107	68			6.3	41	127.3	170.7	10.0	52.5	41.7
CWH633	2138			106	69			6.7	42	124.3	169.0	11.9	50.6	41.6
KS4112 ^a	2126			106	87			5.9	43	127.7	171.0	10.9	51.5	41.0
Hybrisurf	2107			105	44			7.1	42	127.3	175.7	11.7	50.7	43.4
Kronos	2097			104	48			6.3	45	127.7	176.0	12.4	50.4	40.6
KS9135	2079			103	47			6.3	43	128.0	175.7	11.1	51.2	40.7
DKW46-15	2072			103	63			5.9	39	126.3	170.0	12.0	50.5	41.9
Hornet	2071			103	35			7.5	43	127.7	176.7	12.7	50.3	41.9
DKW47-15	2067			103	52			7.1	40	124.3	171.3	10.8	51.9	41.3
Visby	2062			103	48			6.3	40	125.0	177.0	12.8	50.1	42.1
Kadore	2055			102	51			7.1	40	128.0	176.7	12.7	50.0	41.9
KS3077	2049			102	67			5.9	41	127.3	172.0	11.2	50.9	42.3
NPZ0791RR	2039			101	32			6.7	43	128.0	174.0	13.8	49.3	43.2
HyClass 154W	2028			101	31			6.7	47	128.0	178.7	14.9	48.6	40.9
DKW41-10	2027			101	57			5.9	39	127.0	173.0	12.0	51.0	40.5
ARC97018	2027			101	44			6.7	43	127.7	174.3	11.3	52.0	41.8
Baldur	2023			101	40			6.3	45	127.3	176.3	16.1	48.3	41.2
Abilene	2009			100	65			5.9	42	127.7	172.0	10.5	51.9	40.8
DKW45-10	2007			100	65			5.9	41	123.0	169.3	12.4	50.2	39.3
Ceres	1984			99	58			5.9	39	127.3	172.3	11.4	50.8	41.4
ARC98015	1980			99	39			6.7	45	127.7	176.3	12.0	50.5	41.1
Taurus	1940			97	52			7.1	42	126.3	172.7	12.5	50.1	43.4
ARC97019	1886			94	44			7.5	43	127.7	176.0	13.8	49.2	41.4
Sumner	1885			94	49			5.5	37	124.3	170.0	11.0	50.9	40.7
ARC2180-1	1874			93	32			7.5	43	128.0	177.3	13.0	49.9	41.2
									-					

Table 12. Results from the 2008 National Winter Canola Variety Trial at Columbia City, IN

				Yield (% of				Fall	Plant	50%			Test	
Name	Υ.	ield (lb	s/a)	test avg.)	Wint	er Surv	ival (%)	Stand	Height	Bloom	Maturity	Moisture	Weight	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(0-10)	(in.)	(d)	(d)	(%)	(lbs/bu)	(%)
ARC98007	1868			93	31			7.5	43	127.7	176.7	14.5	48.8	40.9
Hybristar	1777			88	18			7.1	43	128.7	177.7	14.6	49.1	40.8
CWH116	1719			85	55			7.1	39	127.3	176.7	13.3	49.8	43.3
Dimension	1713			85	40			7.1	40	127.0	174.3	15.5	48.6	43.6
HyClass 107W	1702			85	25			5.0	37	127.7	178.3	13.9	49.3	39.8
Hybrigold	1674			83	41			7.1	45	127.3	178.7	15.2	48.7	41.1
Rally	1660			83	36			8.4	42	127.7	174.0	14.2	49.5	40.8
DKW13-69	1651			82	30			6.7	42	127.3	176.3	14.0	49.1	40.5
Forza	1599			80	17			7.5	39	128.0	180.0	16.9	47.9	40.0
HyClass 110W	1592			79	28			5.9	38	127.7	175.7	13.9	49.3	40.5
DSV07100	1548			77	29			7.5	44	127.7	178.7	15.5	48.3	43.3
Satori	1482			74	22			6.7	40	128.0	181.0	12.6	50.4	42.5
Flash	1445			72	32			8.0	44	128.7	178.7	16.1	48.1	41.5
CWH111	1033			51	16			6.3	35	126.7	178.7	15.7	48.5	41.3
Virginia	1023			51	8			6.7	35	127.7	182.0	15.2	48.5	40.2
Mean	2000				52			6.6	42	126.8	174.1	12.8	50.1	41.4
CV	16				35			15.7	7	0.7	0.5	13.4	2.7	1.4
LSD (0.05)	503				30			1.7	5	1.5	4.3	2.8	2.2	1.2

Bold - Superior LSD Group - Unless two entries differ by more than the LSD, little confidence can be placed in one being superior to the other. Bloom is recorded as the date after January 1 when 50% of plants have ine or more open flowers. Maturity is recorded as the date after January 1 when 90% of plants have reached mature color. ^aVariety supplied by Kansas State University.

Vincennes, Indiana

Chuck Mansfield, Vincennes University Ellsworth Christmas, Purdue University

Planted: 9/10/2007 at 5 lbs/a in 6-in. rows

Harvested: 7/1/2008
Herbicides: None
Insecticides: None
Irrigation: None
Previous Crop: NA
Soil Test: NA
Fertilizer: NA

Soil Type: Lomax loam

Elevation: 500 ft Latitude: 38°45'N

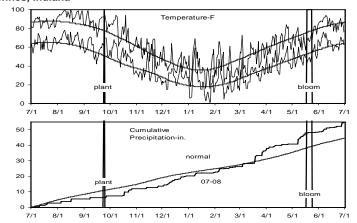


Table 13. Results of the 2008 National Winter Canola Variety Trial at Vincennes, IN

				Yield (% of	Winter Survival		vival	Fall			Plant			Test		
Name	Yie	eld (lbs	s/a)	test avg.)		(%)		Stand	Bloom	Maturity	Height	Lodging	Moisture	Weight	Oil	
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(0-10)	(d)	(d)	(in.)	(%)	(%)	(lbs/bu)	(%)	
Sitro	1971			139				7.5	141	168	54	17	6.3	49.0	41.0	
Safran	1936			137				9.2	142	171	54	3	5.9	49.7	39.7	
Kadore	1853			131				7.9	142	171	52	0	6.9	48.1	39.3	
KS4022	1840			130				7.5	142	170	53	10	6.8	48.9	39.4	
Hornet	1809			128				8.8	142	170	52	33	6.6	48.9	40.5	
Virginia	1783			126				8.8	141	170	49	0	6.5	48.6	40.0	
Flash	1759			124				7.9	142	170	56	0	6.9	48.1	39.7	
Visby	1738			123				6.3	139	169	52	13	6.5	49.0	37.5	
Hybrigold	1729			122				7.5	141	169	55	0	5.8	49.6	40.3	
BSX-501	1723			122				8.8	142	170	50	10	8.1	45.3	35.6	
Forza	1703			120				8.4	142	171	50	7	6.6	49.2	38.7	
Rally	1696			120				8.8	142	171	53	37	5.6	49.8	40.0	
KS4112	1668			118				7.9	142	171	55	10	7.0	48.1	40.1	
KS4158	1661			117				7.5	140	170	53	3	6.3	48.8	40.2	
KS4036	1660			117				7.1	142	171	50	13	7.0	48.5	39.0	
CWH081	1612			114				6.3	142	169	51	7	7.1	48.0	39.2	
CWH095	1610			114				5.8	142	169	50	17	6.7	48.3	39.3	
KS9135	1503			106				8.4	142	171	54	10	8.0	46.2	38.0	
HyClass 154W	1498			106				8.0	142	171	53	0	6.1	49.2	39.2	
ARC2180-1	1496			106				7.5	141	171	53	10	7.5	47.2	39.7	
ARC97019	1485			105				8.4	143	172	54	33	6.7	48.9	38.7	
Hybristar	1468			104				10.0	142	170	49	17	6.6	48.7	39.9	
KS3254	1459			103				6.7	142	171	51	7	7.0	48.6	39.1	
KS3074	1458			103				7.9	142	172	54	10	6.7	48.9	38.8	
KS3302	1458			103				8.8	140	170	50	40	7.4	47.5	40.4	
Taurus	1454			103				6.3	142	169	54	0	7.1	47.9	40.7	
CWH116	1445			102				6.3	142	171	52	7	6.9	48.6	40.6	
ARC98015	1433			101				7.5	142	171	55	0	7.0	48.1	39.4	
HyClass 107W	1429			101				6.3	142	169	49	43	7.3	47.9	39.7	
KS3132	1429			101				7.5	142	171	52	17	6.7	48.8	38.7	
Kronos	1392			98				5.9	142	169	48	60	6.8	48.6	38.6	
KS3018	1375			97				6.3	141	171	51	67	6.9	48.5	38.3	
CWH633	1334			94				6.3	140	170	52	10	6.9	48.5	40.0	
Baldur	1330			94				7.9	142	169	54	43	6.6	49.0	39.6	
DKW47-15	1317			93				8.8	139	168	48	47	6.1	49.4	40.0	
Hybrisurf	1315			93				7.1	142	169	49	33	6.5	48.4	41.7	
Sumner	1313			93				8.0	140	169	47	7	8.0	45.6	39.9	
KS4106	1299			92				9.2	142	171	53	17	6.8	48.5	39.3	
ARC97018	1286			91				6.3	142	170	53	7	6.9	48.4	39.3	
Wichita	1249			88				7.5	142	170	49	3	7.5	47.4	38.7	
Abilene	1229			87				7.9	142	169	50	47	7.1	47.9	38.7	
CWH111	1228			87				8.4	139	169	49	53	6.3	49.3	39.5	

Table 13. Results of the 2008 National Winter Canola Variety Trial at Vincennes, IN

				Yield (% of	Win	ter Sur	vival	Fall				Test			
Name	Yie	eld (lbs	/a)	test avg.)		(%)		Stand	Bloom	Maturity	Height	Lodging	Moisture	Weight	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(0-10)	(d)	(d)	(in.)	(%)	(%)	(lbs/bu)	(%)
ARC98007	1224			87				7.5	141	170	54	0	6.8	48.4	39.2
Satori	1221			86				7.1	140	168	48	3	6.1	49.4	41.7
KS4085	1218			86				7.5	142	169	54	57	6.7	48.8	38.6
KS3077	1217			86				7.5	143	171	53	10	7.3	47.5	39.5
Dimension	1211			86				7.9	140	169	54	0	6.0	49.2	41.4
DKW46-15	1202			85				7.5	142	169	48	63	6.1	49.1	40.1
DKW13-69	1194			84				7.9	142	170	50	13	7.4	47.2	38.8
HyClass 115W	1154			82				6.3	138	168	49	43	6.3	49.2	40.2
KS7436	1138			80				7.1	142	170	53	47	7.3	48.3	39.5
HyClass 110W	1115			79				7.1	139	168	49	17	6.6	49.0	40.2
DSV07100	1104			78				7.5	141	170	56	0	6.3	49.0	41.1
NPZ0791RR	1093			77				9.2	140	171	53	7	6.1	49.4	41.0
BSX-567	1089			77				9.2	142	171	49	67	5.9	49.3	35.7
DKW45-10	1014			72				7.9	138	168	43	70	7.0	47.8	39.1
Ceres	906			64				7.1	142	169	50	77	6.5	49.0	39.4
DKW41-10	683			48				6.7	138	168	45	80	7.4	47.2	35.9
Mean	1414							7.6	141	170	51	23	6.8	48.4	39.4
CV	20							18.8	1	1	5	102	9.7	2.2	3.3
LSD (0.05)	456							2.3	2	2	4	37	1.1	1.7	2.6

Bold - Superior LSD Group - Unless two entries differ by more than the LSD, little confidence can be placed in one being superior to the other. Bloom is recorded as the date after January 1 when 50% of plants have one or more open flowers. Maturity is recorded as the date after January 1 when 90% of plants have reached mature color.

Russellville, Kentucky

John Hagan and Brian Caldbeck, Miles Enterprises
Planted: 10/1/2007 at 4 lbs/a in 7.5-in. rows

Harvested: 6/23/2008
Herbicides: Trifluralin 1.75 pt/a
Insecticides: Proline 4/15 & 4/21/08
Fungicide: Warrior 4/21/08

Previous Crop: Wheat Soil Test: NA

Fertilizer: 28-69-90-10 lbs N-P-K-S fertilizer in fall

140-0-0 lbs N-P-K fertilizer in spring

Soil Type: NA

Elevation: 870 ft Latitude: 38°32'N

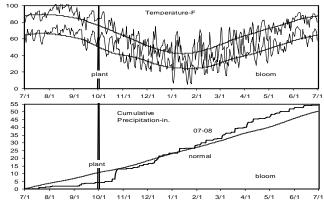


Table 14. Results from the 2008 National Winter Canola Variety Trial at Russellville, KY

				Yield (% of								
Name		Yield (lbs/a)	test avg.)	Wii	nter Sur	vival (%)	Moisture	Test Weight	Shatter	Lodging	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(%)	(lbs/bu)	(%)	(%)	(%)
Hornet	5365	3965	4665	233				6.5				38.5
Rally	5215	4095	4655	227				7.0				37.7
Flash	5200	3830	4515	226				6.7				38.7
Dimension	4695			204				6.9				41.3
Hybristar	4585	3310	3948	199				6.3				38.3
NPZ0791RR	4540			197				7.3				38.9
Hybrigold	4520	2910	3715	197				7.0				39.3
Sitro	4485	3485	3985	195				6.6				37.6
Virginia	4370	2415	3393	190				7.1				37.8
KS3302	4310	2970	3640	187				7.6				38.6
Taurus	4295	2580	3438	187				7.1				39.8
46W99	4260			185				7.3				39.4
Safran	4250			185				6.9				38.5
KS3254	4235	3290	3763	184				8.2				38.2
ARC98007	4215	2565	3390	183				6.4				38.4
Sumner	4195	2595	3395	182				6.3				38.7
MH904413	4175			182				5.9				
DSV07100	4170			181				6.9				40.6
ARC97018	4155	2730	3443	181				7.2				38.0
ARC98015	4130	2690	3410	180				9.3				37.3
ARC2180-1	4065		3200	177				9.2				36.9
KS3074	4055	3185	3620	176				8.2				36.9
KS7436	4030		3425	175				7.2				38.3
ARC97019	4010	2620	3315	174				7.6				36.9
KS4158	4000			174				5.9				38.9
KS4022	3995	2690	3343	174				6.0				39.1
Ceres	3960	2660	3310	172				7.0				37.5
46W14	3950			172				8.7				38.7
HyClass 154W	3940		3403	171				8.1				37.3
HyClass 110W	3920			170				7.2				37.1
KS3132	3875		3545	168				7.3				37.6
KS3077	3865	2960	3413	168				8.5				37.3
Wichita	3850		3430	167				6.1				38.1
BSX-501	3785	3010	3430	165				7.7				37.0
45D03	3775			164				7.7 7.4				38.0
				_								
KS4085	3695	3070	3383	161				7.8				38.1
Abilene	3665	2425	3045	159				6.9				36.2
Hybrisurf	3655			159				7.8				39.0
Forza	3650	2240		159				9.0				37.4
KS9135	3595	3340	3468	156				7.9				37.2
CWH081	3510			153				5.8				36.9
CWH095	3505			152				6.9				37.1
Baldur	3460	2815	3138	150				6.4				38.5

Table 14. Results from the 2008 National Winter Canola Variety Trial at Russellville, KY

				Yield (% of								
Name		Yield (I	bs/a)	test avg.)	Wii	nter Sur	vival (%)	Moisture	Test Weight	Shatter	Lodging	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(%)	(lbs/bu)	(%)	(%)	(%)
Kadore	3450	3885	3668	150				6.7				36.1
Kronos	3430	2440	2935	149				6.9				37.6
HyClass 115W	3410			148				6.0				38.0
CWH633	3360			146				6.6				39.1
Visby	3305			144				6.0				38.5
KS3018	3275	2960	3118	142				7.7				36.4
DKW46-15	3125			136				5.5				39.5
DKW45-10	2980			130				6.8				36.8
DKW13-69	2915			127				7.2				37.4
CWH111	2900			126				6.1				39.0
Satori	2815	2565	2690	122				5.9				38.5
CWH116	2805			122				6.4				38.7
DKW47-15	2800			122				5.7				38.1
DKW41-10	2515			109				6.2				37.5
HyClass107W	2515			109				6.9				36.7
Jetton	2490			108				10.5				36.6
Plainsman	2335	2420	2378	102				8.1				35.9
BSX-567	2300			100				7.5				36.8
Mean	3760							7.1				38.0
LSD (0.05)	1050							1.5				2.1
CV	17							13.0				1.6

Bold - Superior LSD Group - Unless two entries differ by more than the LSD, little confidence can be placed in one being superior to the other.

Edwin Lentz, The Ohio State University

Planted: 9/6/2007 at 6.7 lbs/a in 7-in. rows

Harvested: 7/16/2008
Herbicides: None
Insecticides: None
Irrigation: None
Previous Crop: Wheat

Soil Test: P=32 ppm, K=145 ppm, pH= 7.2
Fertilizer: 27-69-90 lbs N-P-K fertilizer in fall
101-0-0 lbs N-P-K fertilizer in spring

Soil Type: Hoytville silty clay loam

Elevation: 636 ft Latitude: 41°21'N

Comments:

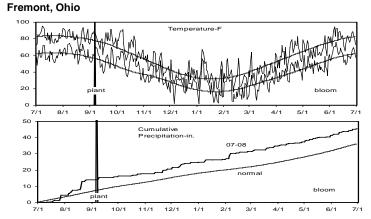


Table 15. Results for the 2008 National Winter Canola Variety Trial at Fremont, OH

Table 15. Resu				Yield (% of	-,		,		50%	Plant		
Line		Yield (lbs	s/a)	test avg.)	v	Vinter Su	rvival	Fall Stand	Bloom	Height	Shatter	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(%)	(d)	(in.)	(%)	(%)
Sitro	4078	2373	3225	130	94			98	123	50		43.5
CWH111	4021			129	90			98	122	45		41.9
Hornet	3965	2785	3375	127	95			98	123	53		42.2
Rally	3820	2947	3383	122	92			96	123	51		43.5
Hybristar	3656			117	91			97	124	47		43.0
Hybrisurf	3650			117	88			99	124	46		43.3
Wichita	3490	2002	2746	112	93			98	123	51		41.9
Flash	3420	2273	2847	109	96			96	124	49		42.6
CWH095	3372			108	97			98	123	47		41.8
CWH116	3364			108	94			97	124	43		42.5
Baldur	3355	1828	2592	107	91			96	123	51		42.2
Kronos	3337	1952	2645	107	92			97	123	53		41.5
Kadore	3270	2075	2672	105	96			99	123	44		42.0
CWH081	3256			104	94			97	124	48		42.2
KS3077	3183	1661	2422	102	97			98	123	49		44.0
Forza	3063			98	94			97	124	38		43.0
CWH633	2983			95	98			97	123	46		42.2
KS3302	2978	1701	2340	95	94			96	123	49		42.3
Hybrigold	2972			95	95			96	123	48		41.9
DKW46-15	2968			95	95			95	123	49		41.6
Dimension	2930			94	92			98	123	47		43.1
HyClass 110W	2915			93	84			98	124	45		42.3
Safran	2913			93	94			97	124	48		42.1
DKW47-15	2901			93	95			95	123	47		41.9
Virginia	2868	2036	2452	92	88			98	124	38		41.8
Sumner	2866	1379	2123	92	91			96	122	47		43.4
Ceres	2855	1941	2398	91	92			97	124	46		43.9
KS3074	2793	1727	2260	89	97			98	123	50		40.3
DKW41-10	2707			87	95			96	123	44		43.8
DKW13-69	2665			85	95			94	124	46		43.4
KS9135	2636	1730	2183	84	94			98	123	48		41.3
HyClass 115W	2634			84	93			97	122	44		42.6
DKW45-10	2623			84	90			98	122	43		42.9
DSV07100	2552			82	95			96	123	46		41.6
Satori	2427			78	88			97	124	42		42.1
Jetton												42.0
Mean	3128				93			97	123	47		42.4
CV	11				3			2	0	6		3.5
LSD (0.05)	461				4			NS	1	4		NS

Bold - Superior LSD Group - Unless two entries differ by more than the LSD, little confidence can be placed in one being superior to the other. Bloom is recorded as the date after January 1 when 50% of plants have one or more open flowers.

Knoxville, Tennessee

Carl Sams and Dennis West, University of Tennessee

Planted: 9/25/07 at 8 lbs/a in 7-in. rows

Harvested: 6/12/08 Herbicides: None Insecticides: None Irrigation: None Previous Crop: Fallow

Soil Test: P=medium, K=medium

Fertilizer: 30-30-30 lbs of N-P-K fertilizer in the fall

119-0-0 lbs of N-P-K fertilizer in the spring

Soil Type: Sequoia silt loam

Elevation: 890 ft Latitude: 36°02'N

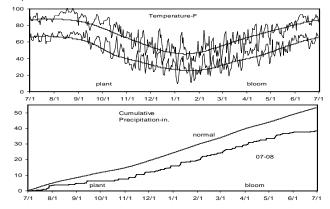


Table 16. Results for the 2008 National Winter Canola Variety Trial at Knoxville, TN

				Yield (% of				Fall	Plant			
Name	•	Yield (lbs	s/a)	test avg.)	Wir	iter Sur	vival (%)	Stand	Height	Shatter	Lodging	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(%)	(in.)	(%)	(%)	(%)
Flash	1836			157	100			100			25	39.5
Rally	1711			147	100			100			15	39.6
45D03	1677			144	100			100			0	39.7
CWH081	1658			142	100			100			3	37.5
CWH116	1614			138	100			100			0	41.3
Hybrigold	1560			134	100			100			5	40.0
Kadore	1510			129	100			100			0	38.8
Baldur	1492			128	100			100			28	40.3
KS4158	1478			126	100			96			3	40.3
DSV07100	1462			125	100			100			10	40.5
Hybristar	1448			124	100			100			16	39.2
Dimension	1448			124	100			100			6	42.0
46W14	1431			122	100			100			10	41.5
ARC97018	1424			122	100			100			6	38.9
CWH095	1384			118	100			100			3	39.1
Visby	1374			118	100			95			5	39.3
Hornet	1343			115	100			100			28	40.1
ARC2180-1	1324			113	100			100			3	38.3
KS3074	1300			111	100			100			5	39.4
Sitro	1277			109	100			100			25	40.0
Kronos	1262			108	100			100			11	38.7
KS3254	1261			108	100			100			3	38.7
Safran	1247			107	100			100			11	41.3
Forza	1247			107	100			100			1	39.0
Taurus	1202			103	100			100			10	40.6
Hybrisurf	1201			103	100			100			18	40.7
Wichita	1200			103	100			100			8	38.8
KS3302	1189			102	100			100			11	39.6
DKW46-15	1161			99	100			100			6	40.2
DKW13-69	1150			98	100			100			8	38.5
Ceres	1144			98	100			100			6	39.2
BSX-501	1140			98	100			100			15	38.5
CWH111	1120			96	100			100			5	40.1
Satori	1078			92	100			100			6	39.2
KS3077	1076			92	100			100			10	38.8
HyClass 107W	1069			91	100			100			11	39.2
Virginia	1042			89	100			100			6	37.7
ARC98007	1024			88	100			100			13	37.7
KS4085	1008			86	100			100			3	37.9
46W99	1008			86	100			100			10	39.3
HyClass 154W	989			85	100			100			6	38.7
NPZ0791RR	973			83	100			100			45	41.2
KS9135	955			82	100			100			8	38.6
	000			~-							•	

Table 16. Results for the 2008 National Winter Canola Variety Trial at Knoxville, TN

				Yield (% of	-			Fall	Plant			
Name	,	Yield (lbs	/a)	test avg.)	Wir	nter Sur	vival (%)	Stand	Height	Shatter	Lodging	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(%)	(in.)	(%)	(%)	(%)
ARC98015	944			81	100			100			18	38.0
KS4022	924			79	100			100			8	38.5
BSX-567	905			77	100			100			8	37.9
KS3018	893			76	100			100			6	38.4
Abilene	871			75	100			100			15	37.7
ARC97019	846			72	100			100			16	37.7
KS7436	842			72	100			100			11	39.4
Sumner	832			71	100			93			5	39.6
KS3132	805			69	100			100			30	39.5
CWH633	693			59	100			100			6	37.5
DKW47-15	686			59	100			100			10	38.3
HyClass 115W	648			55	100			100			21	38.5
DKW41-10	602			52	100			100			28	38.4
DKW45-10	553			47	100			100			23	39.2
HyClass 110W	523			45	100			100			55	38.4
Jetton												
Plainsman												
Mean	1168				100			99.7			12.2	39.2
CV	26							1.6			112	2.4
LSD 0.05	504							3			23	1.9

Bold - Superior LSD Group - Unless two entries differ by more than the LSD, little confidence can be placed in one being superior to the other. Yields adjusted to 9% moisture.

Milan, Tennessee

Carl Sams and Dennis West, University of Tennessee

Planted: 10/1/07 at 8 lbs/a in 7-in. rows

Harvested: 6/16/08

Herbicides: Roundup 32 oz preplant

Insecticides: None Irrigation: None Previous Crop: Wheat

Soil Test: P=high, K=medium, pH=5.9

Fertilizer: 30-30-30 lbs N-P-K fertilizer in the fall

90-0-0 lbs N-P-K fertilzier in the spring

Soil Type: Grenada silt loam

Elevation: 424 ft Latitude: 35°54'N

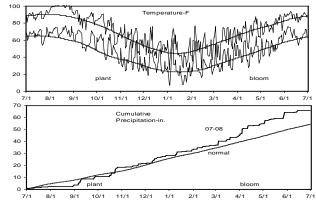


Table 17. Results from the 2008 National Winter Canola Variety Trial at Milan, TN

	Yield (lbs		test avg.)			vival (%)	Height	Shatter	Lodging	Weight	Oil
							_ ` ′		. ,		(%)
											40.1
											41.0
											40.4
											41.5
											41.1
1387			147								40.0
1297			138								40.3
1244			132								41.7
1200			128								40.7
1197			127								41.3
1192			127								40.5
1147			122								40.9
1144			122								40.2
1142			121								40.1
											41.7
											40.3
											40.0
											40.4
											40.7
											40.1
											39.8
											40.3
											39.8
											40.4
											40.5
											40.5
											42.7
			_								41.3
											41.8
											39.8
877											40.9
842			90								42.5
832			88								40.3
820			87								39.1
818			87								41.9
817			87								39.7
816			87								40.5
810			86								40.3
806			86								40.6
											41.2
											40.2
795			85								39.4
											JJ.7
	1244 1200 1197 1192 1147 1144 1142 1131 1110 1077 1070 1038 1026 1023 992 984 921 899 885 882 878 877 842 832 820 818 817 816 810 806 799 797	1909 1557 1456 1439 1431 1387 1297 1244 1200 1197 1192 1147 1144 1142 11410 1101 1009 1077 1070 1038 1026 1023 1026 1023 992 984 992 984 992 885 882 887 887 8882 887 8882 8882 8882 8882 8882 8881 8810 810 806 799 797	1909 1557 1456 1439 1387 1297 1297 1297 1297 1297 1297 1297 1297 1297 1297 1297 1297 1299 1297 1298 129	1909 203 1557 166 1456 155 1439 153 1431 152 1387 147 1297 138 1244 132 1200 128 1197 127 1192 127 1147 122 1144 122 1144 122 1110 118 1101 118 1101 115 1070 114 1038 110 1026 109 1023 109 1023 109 1023 106 984 98 899 99 885 94 885	1909 203 1557 166 1456 155 1439 153 1431 152 1387 147 1297 138 1200 128 1197 127 1192 127 1147 122 1144 122 1142 121 1131 120 1110 118 1101 117 1077 115 1070 114 1023 109 992 106 984 105 9	1909 203 1456 155 1439 153 1431 152 <	1909 203 1557 166 1436 155 1439 153 1387 147 1297 138 1290 128 1197 127 1192 127 1144 122 1144 122 1144 122 1144 122 1110 118 1101 117 1107 115 1070 -	1909	1909 203 <td>1909 </td> <td> 1909 </td>	1909	1909

Table 17. Results from the 2008 National Winter Canola Variety Trial at Milan, TN

				Yield (% of				Plant			Test	
Name	•	Yield (lbs	s/a)	test avg.)	Wir	ter Sur	vival (%)	Height	Shatter	Lodging	Weight	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(in.)	(%)	(%)	(lbs/bu)	(%)
Ceres	781			83								39.5
CWH095	775			82								41.3
DKW47-15	727			77								39.9
DKW13-69	707			75								40.2
DSV07100	700			74								42.4
DKW46-15	666			71								41.5
Taurus	634			67								41.7
Visby	634			67								40.0
CWH116	587			62								41.3
HyClass 115W	585			62								40.5
Abilene	518			55								38.7
Baldur	490			52								40.3
BSX-567	485			52								38.6
DKW41-10	453			48								40.9
HyClass 107W	326			35								39.6
Jetton												39.1
Plainsman												38.1
Mean	940											40.5
CV	33											1.4
LSD 0.05	508											1.2

Bold - Superior LSD Group - Unless two entries differ by more than the LSD, little confidence can be placed in one being superior to the other. Yields adjusted to 9% moisture. Oil adjusted for small sample size.

Springfield, Tennessee

Carl Sams and Dennis West, University of Tennessee

Planted: 9/28/07 at 8 lbs/a in 7-in. rows

Harvested: 6/18/08

Herbicides: Roundup preplant, Select 2EC

Insecticides: None Irrigation: None Previous Crop: Fallow

Soil Test: P=high, K=high, pH=6.0

Fertilizer: 30-0-0 lbs N-P-K fertilizer in the fall

90-0-0 lbs N-P-K fertilizer in the spring

Soil Type: Dickson silt loam

Elevation: 650 ft Latitude: 36°30'N

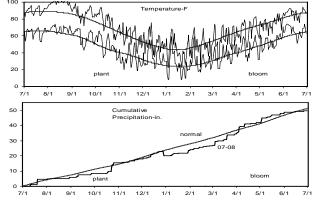


Table 18. Results from the 2008 National Winter Canola Variety Trial at Springfield, TN

				Yield (% of				Fall			Test	
Name	•	Yield (lbs	s/a)	test avg.)	Wir	ter Sur	vival (%)	Stand	Lodging	Shatter	Weight	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(%)	(%)	(%)	(lbs/bu)	(%)
Safran	2214			133	100			63				42.6
Sitro	2191			131	100			77				42.8
45D03	2175			130	100			86				42.6
Rally	2172			130	100			85				42.5
Hornet	2130			128	100			78				41.9
Hybrigold	2080			125	100			57				41.5
KS3077	2078			124	100			78				42.5
CWH095	2073			124	100			83				42.4
KS4158	2020			121	100			79				43.1
Taurus	2012			120	100			68				43.4
CWH111	1989			119	100			67				42.6
DSV07100	1879			113	100			70				43.9
Dimension	1868			112	100			75				44.5
CWH081	1858			111	100			78				42.6
Wichita	1831			110	100			75				42.9
KS9135	1811			108	100			77				41.9
KS3254	1810			108	100			78				41.4
Hybrisurf	1793			107	100			83				44.2
Sumner	1738			104	100			53				41.8
KS7436	1730			104	100			80				42.1
Virginia	1730			104	100			78				42.1
ARC97018	1729			104	100			83				42.1
KS4085	1712			103	100			75				41.5
Visby	1695			101	100			62				42.3
HyClass 115W	1691			101	100			82				41.5
K\$3302	1687			101	100			78				43.4
KS3018	1674			100	100			75				41.8
Forza	1673			100	100			78				41.4
DKW45-10	1669			100	100			65				41.1
Kadore	1656			99	100			43				38.4
ARC97019	1646			99	100			68				41.9
HyClass 154W	1619			97	100			53				40.8
NPZ0791RR	1617			97	100			77				43.2
46W14	1614			97	100			77				44.3
KS3132	1613			97	100			78				42.0
HyClass 110W	1600			96	100			83				39.3
CWH633	1593			95	100			67				42.3
DKW47-15	1588			95	100			50				41.8
Flash	1569			94	100			77				43.5
KS3074	1520			91	100			77				42.2
Satori	1505			90	100			70				42.6
BSX-501	1495			89	100			70				42.0
												42.7
Baldur	1468			88	100			77				

Table 18. Results from the 2008 National Winter Canola Variety Trial at Springfield, TN

				Yield (% of				Fall			Test	
Name	•	Yield (lbs	/a)	test avg.)	Wir	nter Surv	vival (%)	Stand	Lodging	Shatter	Weight	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(%)	(%)	(%)	(lbs/bu)	(%)
46W99	1458			87	100			58				42.4
ARC2180-1	1458			87	100			70				42.1
DKW46-15	1446			87	100			72				42.7
Hybristar	1424			85	100			72				42.5
CWH116	1398			84	100			75				42.6
DKW13-69	1391			83	100			80				41.5
Abilene	1391			83	100			72				41.2
ARC98007	1335			80	100			65				41.6
Ceres	1325			79	100			67				40.9
Kronos	1315			79	100			70				40.9
ARC98015	1303			78	100			80				41.0
DKW41-10	1281			77	100			70				41.6
BSX-567	1261			75	100			68				40.6
KS4022	1195			72	100			73				40.8
HyClass 107W	1064			64	100			50				41.0
Plainsman								0				41.1
Jetton								0				39.3
Mean	1670				100			72				42.0
CV	21							19				2.1
LSD 0.05	570							23				1.8

Bold - Superior LSD Group - Unless two entries differ by more than the LSD, little confidence can be placed in one being superior to the other. Yields adjusted to 9% moisture.

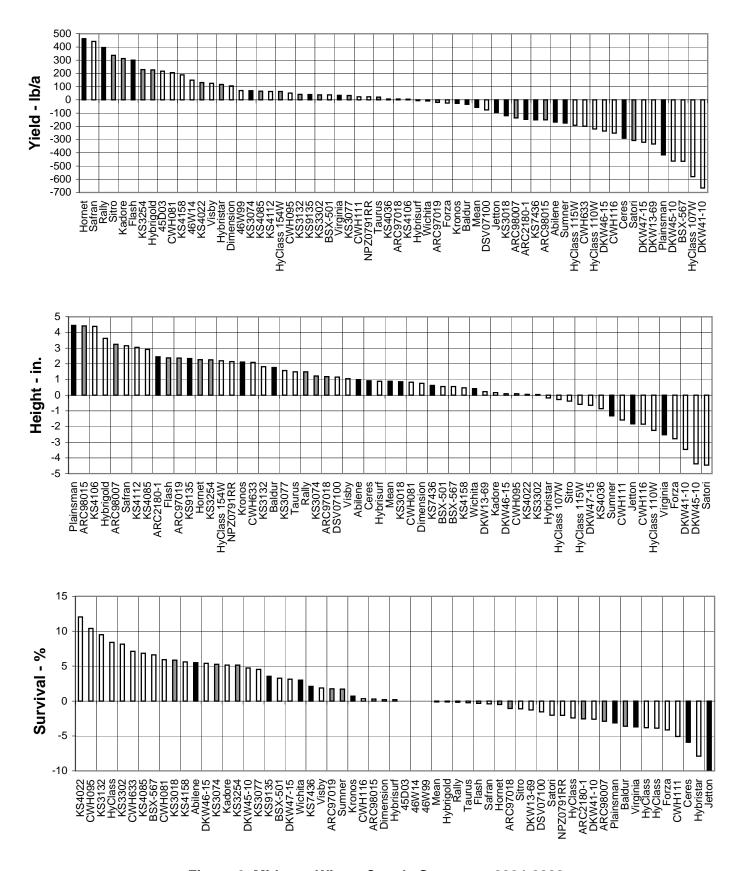
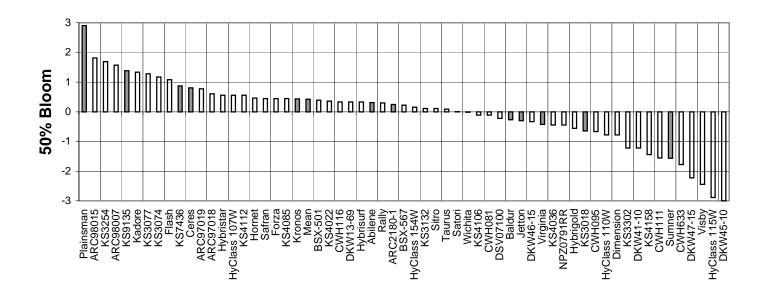
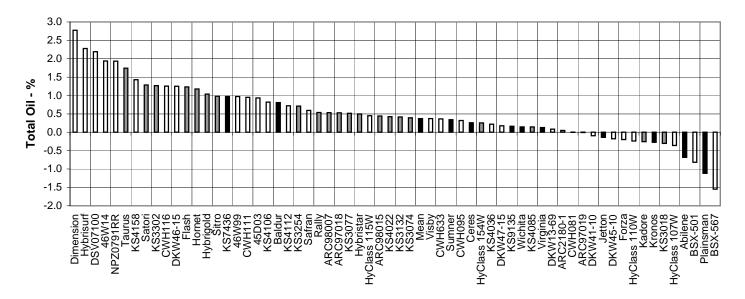




Figure 2. Midwest Winter Canola Summary, 2004-2008.

Note: Values are averages of the differences between each cultivar and the mean of Kronos, Virginia, and Wichita for yield (lbs/a), winter survival (%), plant height (in.), 50% bloom date (days), and total oil content (%). The number of observations for each trait is represented by the different colored bars (as shown at right).

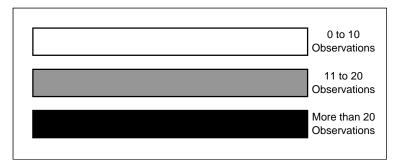


Figure 2. Midwest Winter Canola Summary, 2004-2008 (continued).

Akron, Colorado

Jerry Johnson and Jean-Nicolas Enjalbert

Colorado State University

Planted: 8/28/2007 at 8 lbs/a

Harvested: 7/24/2008
Herbicides: None
Insecticides: None
Irrigation: 5 in.
Previous Crop: Wheat
Soil Test: NA

Fertilizer: 50-0-0 lbs N-P-K fertilizer in fall

Soil Type: Valentine sand

Elevation: 4300 ft Latitude:40°09'N

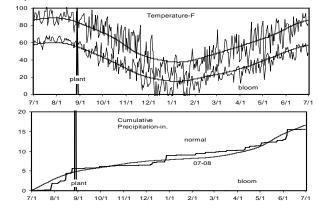


Table 19. Results from the 2008 National Winter Canola Variety Trial at Akron, CO

				Yield % of			,			Test	
		Yield (lb	s/a)	test avg.		ter Sur	vival (%)	Shatter	Moisture	Weight	Oil
Name	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(%)	(%)	(lbs/bu)	(%)
Kronos	2162			163					5.4	44.7	36.4
Kadore	1829			138					5.1	46.2	32.6
CWH081	1810			136					5.0	45.0	32.0
DKW41-10	1745			131					4.9	47.3	35.4
Baldur	1720			129					6.1	43.8	34.4
NPZ0791RR	1711			129					5.2	45.6	36.2
DKW47-15	1637			123					5.3	44.6	36.7
KS4158	1625			122					4.9	41.3	35.0
Ceres	1607			121					5.2	44.4	35.3
Hybrisurf	1539			116					5.5	45.0	36.5
DKW46-15	1530			115					4.9	43.2	37.5
Flash	1520			114					5.5	49.3	35.8
ARC98015	1504			113					5.6	46.0	34.6
KS3254	1502			113					5.2	45.3	34.9
CWH116	1499			113					4.9	46.5	36.4
Rally	1497			113					5.1	46.1	33.9
Visby	1494			112					5.3	44.3	35.4
KS4085	1470			111					5.0	46.5	36.1
Hybristar	1434			108					5.3	39.2	34.3
CWH633	1428			107					4.9	44.5	36.4
Hornet	1404			106					5.3	45.6	32.1
KS4022	1393			105					5.2	42.9	34.8
KS3077	1382			104					5.2	43.9	32.7
KS9135	1378			104					5.2	44.1	32.5
ARC98007	1376			103					5.2	43.3	32.7
ARC97019	1332			100					5.1	44.4	34.0
Safran	1323			100					4.8	45.9	31.8
Dimension	1311			99					5.6	43.2	36.4
HyClass 115W	1303			98					5.2	44.3	33.8
BSX-567	1303			98					4.9	43.9	33.5
CWH095	1282			96					5.4	41.8	33.1
Wichita	1268			95					4.8	44.3	32.4
KS3132	1264			95					5.2	44.2	32.4
CWH111	1255			94					5.7	48.0	34.3
DKW13-69	1248			94					5.7 5.7	44.9	34.5
Sitro	1236			93					5. <i>1</i> 5.0	44.9 45.1	31.8
	1230			93 92						42.7	32.9
HyClass 154W Satori	1217			92 91					6.2 5.8	42.7 38.0	34.5
KS3074	1190			90					5.2	44.2	33.2
Sumner	1188			89					4.8	41.4	33.4
KS3302	1175			88					5.0	41.2	33.9
DSV07100	1135			85 05					6.0	45.2	33.8
ARC97018	1129			85					5.0	43.9	32.8

Table 19. Results from the 2008 National Winter Canola Variety Trial at Akron, CO

		·	·	Yield % of			·	·		Test	
		Yield (lb	s/a)	test avg.	Wir	ter Sur	vival (%)	Shatter	Moisture	Weight	Oil
Name	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(%)	(%)	(lbs/bu)	(%)
Forza	1109			83					5.4	43.8	31.3
KS7436	1109			83					5.2	44.1	32.7
ARC2180-1	1069			80					5.9	43.2	33.7
Taurus	1013			76					5.5	45.0	33.9
Abilene	1002			75					5.4	40.7	31.4
BSX-501	990			74					5.2	41.4	32.6
HyClass 110W	983			74					5.9	43.4	32.2
Virginia	980			74					5.3	41.0	30.6
Plainsman	964			73							
DKW45-10	909			68					5.6	38.0	31.0
HyClass107W	880			66					6.1	43.9	33.5
KS3018	873			66					5.5	43.3	32.9
Hybrigold	799			60					5.2	41.9	31.8
Jetton											
Mean	1329								5.3	43.9	33.8
CV	29								7.6	6.1	5.7
LSD (0.05)	617								NS	NS	NS

Bold - Superior LSD Group - Unless two entries differ by more than the LSD, little confidence can be placed in one being superior to the other.

Calvin Pearson, Western Colorado Research Center

Colorado State University

Planted: 9/19/2007 at 6.4 lbs/a in 30-in. rows

Harvested: 7/8/2008 Herbicides: Trifluralin 1.5 pt/a

Insecticides: None Irrigation: Yes Previous Crop: Alfalfa Soil Test: None

Fertilizer: 36-92-0 lbs N-P-K fertilizer in fall

42-0-0 lbs N-P-K fertilizer in spring

Soil Type: Youngston clay loam

Elevation: 4605 ft Latitude: 41°83'1"N

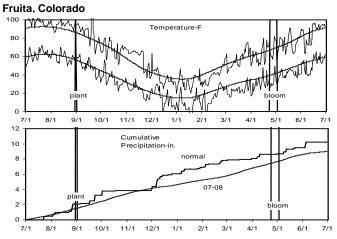


Table 20. Results of the 2008 National Winter Canola Variety Trial at Fruita, CO

				Yield (% of				Fall	50%			Test	
Name	•	rield (lb	s/a)	test avg)	Win	ter Surv	vival (%)	Stand	Bloom		Moisture	Weight	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(0-10)	(d)	(%)	(%)	(lbs/bu)	(%)
Sitro	3724	2908	3316	140				9.8	119	0.0	5.3	49.7	45.5
Hybrisurf	3383			127				8.3	119	0.0	5.4	49.9	45.9
Baldur	3342	3112	3227	125				10.0	118	0.0	5.7	50.6	44.9
Forza	3319			125				9.2	119	0.0	5.2	49.7	42.0
Kronos	3312	2276	2794	124				9.2	119	1.7	5.8	51.9	44.3
Rally	3298	3083	3191	124				10.0	119	0.0	5.4	50.2	44.8
Hornet	3287	3115	3201	123				9.3	119	0.0	5.3	51.2	45.8
CWH081	3276			123				9.3	119	0.0	5.6	50.8	43.4
DSV07100	3250			122				8.7	119	0.0	5.5	50.9	46.2
Visby	3175			119				10.0	117	0.0	5.6	49.9	45.1
HyClass 115W	3171			119				9.5	118	1.7	5.2	49.8	43.4
Satori	3129	3251	3190	117				9.0	122	0.0	5.7	49.8	45.3
Safran	3110			117				9.7	119	0.0	5.3	49.5	43.4
Hybristar	3054	2937	2996	115				9.5	118	1.7	5.3	49.0	44.2
ARC97019	3037	2426	2732	114				9.0	120	0.0	5.8	49.8	43.6
Dimension	3005			113				8.7	118	1.7	5.5	50.7	46.8
Flash	2984	3213	3098	112				9.2	120	1.7	5.2	50.8	45.3
KS7436	2951	2109	2530	111				9.7	119	1.7	5.3	50.8	45.2
KS4158	2943			110				10.0	118	0.0	5.6	49.4	45.0
CWH116	2923			110				9.8	122	0.0	5.3	50.8	46.1
ARC98007	2915	2115	2515	109				9.3	118	0.0	5.5	49.2	44.1
DKW13-69	2882			108				10.0	119	3.3	5.2	49.9	43.5
HyClass 154W	2854	1849	2351	107				9.0	120	0.0	6.1	48.7	42.8
Abilene	2818	2187	2503	106				10.0	120	0.0	5.9	49.5	42.6
KS3254	2771	1432	2101	104				9.2	121	3.3	5.5	50.2	44.0
Taurus	2712	2456	2584	102				9.7	117	0.0	6.0	50.0	44.9
Hybrigold	2700	2554	2627	101				9.8	119	0.0	5.4	49.9	43.7
CWH095	2685			101				9.8	119	0.0	5.4	49.8	44.1
Wichita	2605	2170	2387	98				10.0	119	3.3	5.7	49.5	43.5
BSX-567	2603			98				9.0	119	1.7	5.3	50.4	43.5
DKW46-15	2600			98				10.0	119	0.0	4.8	50.0	45.0
DKW45-10	2586			97				9.0	116	0.0	5.4	49.4	42.6
KS4085	2586	2231	2408	97				9.0	120	0.0	5.9	49.0	43.1
CWH633	2583			97				9.8	118	0.0	6.0	50.2	44.4
ARC98015	2560	1748	2154	96				9.7	119	3.3	5.8	50.3	43.8
Ceres	2550	1364	1957	96				7.8	120	0.0	5.6	51.1	44.3
Kadore	2516	2307	2411	94				9.8	122	0.0	5.1	50.6	43.3

Table 20. Results of the 2008 National Winter Canola Variety Trial at Fruita, CO

				Yield (% of				Fall	50%			Test	
Name	١	rield (lb	os/a)	test avg)	Wint	ter Surv	ival (%)	Stand	Bloom	Shatter	Moisture	Weight	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(0-10)	(d)	(%)	(%)	(lbs/bu)	(%)
BSX-501	2482			93				9.2	119	0.0	6.0	49.1	42.9
KS3132	2481	2610	2546	93				10.0	119	0.0	5.5	48.8	43.8
ARC2180-1	2476	2125	2300	93				9.7	118	1.7	5.7	49.6	44.3
DKW47-15	2461			92				9.5	118	0.0	5.7	49.7	43.5
HyClass 110W	2426			91				10.0	119	0.0	5.4	48.8	43.3
DKW41-10	2422			91				9.2	118	0.0	5.5	50.1	44.2
Virginia	2412	2211	2312	91				8.5	119	0.0	5.8	48.4	43.7
KS9135	2401	2163	2282	90				10.0	119	0.0	5.8	48.7	43.1
HyClass 107W	2382			89				10.0	120	0.0	5.4	47.0	42.1
KS4022	2378	2487	2432	89				9.2	119	0.0	5.6	49.0	43.3
KS3018	2375	2316	2346	89				8.8	118	0.0	5.7	48.5	43.0
CWH111	2353			88				8.0	116	0.0	5.4	49.4	43.3
ARC97018	2351	2541	2446	88				9.7	118	1.7	5.5	49.7	44.3
KS3302	2345	2024	2185	88				10.0	118	1.7	6.1	45.8	43.0
KS3077	2334	1844	2089	88				7.0	119	0.0	5.6	48.1	43.4
Sumner	2264	2460	2362	85				8.8	114	0.0	5.4	50.6	43.1
KS3074	2152	2282	2217	81				9.8	119	0.0	5.3	48.8	43.6
NPZ0791RR	2124			80				10.0	119	0.0	5.9	49.1	43.7
Mean	2760							9.4	119	0.5	5.5	49.7	43.9
CV	12							12.1	1	352.7	8.0	1.3	1.1
LDS (0.05)	551							NS	1	NS	NS	1.1	1.0

Bold - Superior LSD Group - Unless two entries differ by more than the LSD, little confidence can be placed in one being superior to the other. Bloom is recorded as the date after January 1 when 50% of plants have one or more open flowers.

Rocky Ford, Colorado

Jim Valliant and Abdel Berrada, Arkansas Valley Research Center

Colorado State University

Planted: 8/31/2007 at 5 lbs/a

Harvested: 7/21/2008

Herbicides: Trifluralin 1.5 pt/a, Poast 1.5 pt/a

Fungicide: Warrior 3.8 oz/a Irrigation: 5 applications

Previous Crop: NA Soil Test: None

Fertilizer: 84.5-78-0 lbs N-P-K fertilizer in fall

68-0-0 lbs N-P-K fertilizer in spring

Soil Type: Rocky Ford clay loam

Elevation: 4178 ft Latitude: 38°02'N

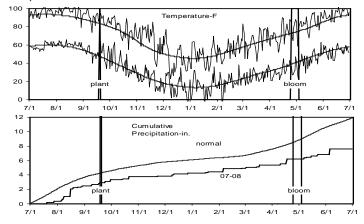


Table 21. Results from the 2008 National Winter Canola Variety Trial at Rocky Ford, CO

				Yield (% of	Win	ter Sur	vival	Fall			Plant			Test	
Name	Yie	eld (lbs	s/a)	test avg)		(%)		Stand	Bloom	Maturity	Height	Shatter	Moisture	Weight	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(0-10)	(d)	(d)	(in.)	(%)	(%)	(lbs/bu)	(%)
CWH095	2738			164	100			9.4	118	181	50	0.7	7.7	41.3	34.3
Kronos	2688			161	100			8.6	119	180	50	3.8	9.1	38.5	33.3
Dimension	2524			151	99			9.2	116	183	46	1.2	10.4	40.7	34.8
Hybrisurf	2497			150	100			9.0	115	181	46	1.5	8.7	40.5	39.0
CWH111	2249			135	100			8.9	115	187	45	8.0	12.0	38.4	33.3
HyClass 110W	2169			130	100			9.4	115	181	47	8.0	9.9	42.6	32.6
KS3254	2163			130	100			9.1	121	181	49	8.0	10.3	45.2	34.4
Ceres	2146			129	99			8.8	121	181	44	1.7	9.3	41.8	35.4
HyClass 115W	2110			126	100			9.0	115	180	48	8.0	10.4	40.7	33.0
ARC2180-1	2087			125	99			8.9	118	184	47	2.2	7.1	35.2	35.0
Sitro	1977	2784	2380	119	100			9.1	116	183	47	0.5	10.2	37.3	35.4
KS3302	1964			118	100			9.2	116	183	44	8.0	7.9	40.0	34.4
KS4158	1941			116	100			9.3	118	181	44	1.2	7.4	39.4	37.2
Visby	1934			116	100			9.0	115	181	45	0.5	7.5	40.0	34.2
Rally	1928	3184	2556	116	100			9.0	117	183	47	0.3	6.8	41.5	35.9
Hornet	1900			114	100			9.0	117	181	51	0.3	8.8	39.2	33.6
DKW13-69	1887			113	98			9.5	119	182	46	1.3	10.3	44.6	36.4
CWH081	1887			113	100			8.5	119	179	47	0.5	11.0	40.1	32.1
Wichita	1884	1944	1914	113	100			8.6	116	180	44	0.5	9.2	39.4	36.0
ARC97018	1873			112	100			9.3	119	179	50	8.0	9.7	43.2	34.2
DKW47-15	1851			111	100			9.0	117	181	46	0.5	8.6	41.9	36.4
DKW45-10	1846			111	100			9.0	115	180	44	1.0	8.0	44.6	34.4
KS3132	1767			106	100			8.9	119	180	48	0.7	8.7	39.1	34.3
KS9135	1761			106	100			8.9	118	179	50	1.0	9.8	40.4	33.7
Hybrigold	1744			105	100			8.8	115	185	43	0.7	11.9	39.9	35.4
HyClass 154W	1740	2216	1978	104	100			8.9	119	181	48	0.5	11.1	40.9	32.5
Flash	1680	2736	2208	101	96			9.2	118	184	46	0.3	6.6	38.4	35.6
Kadore	1659			99	100			9.3	119	182	41	8.0	9.2	37.2	34.0
KS4022	1650			99	100			8.4	118	181	43	0.7	8.3	38.8	34.8
KS7436	1611			97	100			9.3	119	181	44	0.7	8.7	42.5	36.8
ARC98015	1610			96	100			8.8	119	182	47	8.0	8.8	39.5	33.5
KS3077	1603			96	100			8.7	118	179	44	0.7	9.4	41.4	36.3
CWH116	1570			94	100			9.0	118	181	42	1.2	7.2	42.0	35.3
CWH633	1540			92	100			8.7	116	181	41	0.7	7.6	37.9	33.0
Safran	1534			92	100			8.7	117	183	44	0.3	8.7	40.8	34.1
ARC97019	1533			92	100			8.8	120	179	49	1.5	8.6	42.4	33.4
Virginia	1504	1751	1627	90	100			9.3	120	178	44	0.3	8.3	42.2	32.3
DKW46-15	1474			88	99			9.0	117	178	45	0.5	8.4	41.6	34.9
Baldur	1462			88	100			8.6	115	182	46	1.3	8.1	40.0	33.3
Hybristar	1448			87	99			8.9	116	183	42	0.2	8.8	36.8	34.4
Abilene	1432			86	100			8.8	119	178	45	8.0	10.3	41.5	33.0
KS3018	1420			85	100			9.3	117	180	48	1.0	10.9	37.1	34.9

Table 21. Results from the 2008 National Winter Canola Variety Trial at Rocky Ford, CO

				Yield (% of	Win	ter Sur	vival	Fall			Plant			Test	
Name	Yie	eld (lbs	/a)	test avg)		(%)		Stand	Bloom	Maturity	Height	Shatter	Moisture	Weight	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(0-10)	(d)	(d)	(in.)	(%)	(%)	(lbs/bu)	(%)
HyClass 107W	1419			85	100			8.3	119	186	43	0.7	8.9	38.6	32.3
Forza	1383			83	97			9.2	118	182	40	0.3	9.9	39.9	36.6
DSV07100	1377			83	100			9.3	118	185	45	8.0	7.7	43.1	34.6
BSX-501	1376			82	100			8.9	117	180	46	0.5	10.8	41.8	34.6
KS4085	1374	2116	1745	82	100			9.0	117	183	44	0.5	8.1	43.0	35.7
ARC98007	1367			82	100			8.5	119	183	46	0.8	6.9	40.6	35.6
Satori	1290	2096	1693	77	99			9.3	119	183	40	0.5	6.6	41.2	34.1
Sumner	1258			75	99			7.8	115	182	40	1.3	9.1	38.9	34.4
BSX-567	1161			70	100			8.8	117	180	41	0.7	8.3	36.0	34.8
Taurus	1145			69	100			8.9	116	180	45	0.7	11.2	38.8	35.4
KS3074	1064			64	100			8.8	118	178	39	0.7	8.0	40.8	32.4
DKW41-10	1037			62	100			8.8	116	183	39	0.5	6.9	38.5	32.4
Jetton	1028	2225	1626	62	73			5.0	120	187	43	1.7	9.1	35.9	33.8
NPZ0791RR	823			49	99			8.8	115	186	38	0.7	10.3	40.0	32.9
Plainsman	125	2401	1263	7	78			3.3	123	190	46	2.2	13.6	39.8	32.1
Mean	1668				99			8.7	118	182	45	0.9	8.9	40.1	34.4
CV	34				2			5.3	8	1	7	86.9	22.9	9.1	3.9
LSD	909				3			8.0	1	3	5	1.2	NS	NS	2.7

Bold - Superior LSD Group - Unless two entries differ by more than the LSD, little confidence can be placed in one being superior to the other. Bloom is recorded as the date after January 1 when 50% of plants have one or more open flowers. Maturity is recorded as the date after January 1 when 90% of plants have reached mature color.

Kevin Larson, Colorado State University

Plainsman Research Center

Planted: 9/11/2007 at 5 lbs/a in 12-in. rows

Harvested: 7/1/2008 Herbicides: Trifluralin 24 oz/a

Insecticides: None Irrigation: Yes

Previous Crop: Garbanzo bean

Soil Test: pH=7.6

Fertilizer: 50-0-0 lbs N-P-K fertilizer in fall

Soil Type: Baca clay loam

Elevation: 3974 ft Latitude: 37°26'N

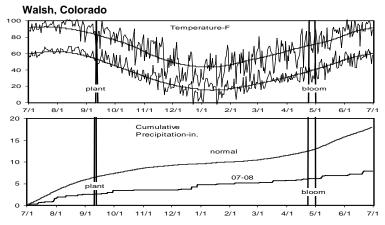


Table 22. Results from the 2008 National Winter Canola Variety Trial at Walsh, CO

				Yield % of				Fall		Plant			
Name		Yield (II	bs/a)	test avg.	Wint	er Surv	ival (0-10)	Stand	Bloom	Height	Lodging	Shatter	Oil*
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(0-10)	(d)	(in.)	(%)	(%)	(%)
Hornet	1175	2434	1805		10.0			7.7	4/25	38		0.0	33.4
Kadore	1016				9.3			6.8	4/29	32		3.0	33.5
Rally	977	2778	1878		9.7			7.3	4/27	38		1.0	32.7
KS4085	935	1910	1423		9.8			7.8	4/26	43		0.0	32.4
KS4022	911	1685	1298		10.0			6.5	4/29	40		1.0	32.9
Safran	871				10.0			8.8	4/27	41		0.0	30.9
CWH633	850				9.8			6.0	4/25	40		1.0	34.2
CWH081	786				9.9			6.0	4/28	34		1.0	32.3
DKW47-15	772				9.9			7.0	4/28	40		1.0	32.0
CWH095	766				7.8			6.5	4/29	36		1.0	32.9
Hybrisurf	749				9.7			8.4	4/25	37		2.0	33.0
Flash	736	2696	1716		8.0			8.9	4/29	40		0.0	29.5
Abilene	713	1483	1098		9.5			6.5	4/29	38		3.0	32.4
Baldur	703				10.0			6.8	4/25	38		4.0	33.1
DKW41-10	700				8.8			6.4	4/24	36		3.0	33.8
DKW46-15	686				10.0			8.8	4/28	34		5.0	31.2
DKW45-10	686				10.0			6.8	4/23	34		4.0	32.2
HyClass 115W	680				9.8			7.2	4/25	37		2.0	31.8
Visby	647				10.0			4.7	4/26	36		4.0	32.6
KS3254	647	2300	1474		8.8			5.0	4/29	35		1.0	34.6
KS3132	634	1984	1309		10.0			6.3	4/29	37		4.0	32.5
KS3077	621	2374	1498		10.0			6.8	4/29	40		2.0	30.3
Virginia	621	1816	1219		9.9			8.5	4/27	40		2.0	32.0
ARC2180-1	614	1795	1205		10.0			8.0	4/28	36		4.0	32.6
NPZ0791RR	612				9.8			7.8	4/26	36		4.0	32.3
ARC97019	594	2461	1528		10.0			5.8	4/29	37		1.0	32.4
BSX-501	594				9.3			6.2	4/29	39		1.0	31.2
Dimension	587				9.2			7.2	4/27	37		3.0	33.1
KS3074	585	2361	1473		10.0			6.5	4/29	42		1.0	33.4
CWH111	574				8.5			6.7	4/24	38		3.0	31.0
Hybrigold	567				6.3			5.0	4/25	39		3.0	30.5
KS9135	561	2017	1289		9.0			5.0	4/29	40		1.0	31.5
KS4158	554				10.0			7.3	4/27	37		2.0	30.6
KS3302	548	1836	1192		10.0			6.3	4/27	37		2.0	32.6
CWH116	535				9.3			5.6	4/29	37		3.0	31.7
ARC97018	528	1802	1165		10.0			6.2	4/26	38		3.0	30.7
KS7436	528	2112	1320		9.3			6.5	4/29	36		4.0	31.6
Taurus	515	2206	1361		8.7			6.7	4/24	41		4.0	31.3
DSV07100	511				5.5			6.0	4/30	33		0.0	31.0
BSX-567	508				10.0			6.3	4/28	37		1.0	30.0
Sitro	497	2763	1630		9.3			4.5	4/25	35		0.0	32.4
Kronos	495	2367	1431		8.8			5.8	4/30	40		4.0	31.2
Satori	488	2071	1280		9.7			6.0	4/26	34		2.0	31.3

Table 22. Results from the 2008 National Winter Canola Variety Trial at Walsh, CO

				Yield % of				Fall		Plant			
Name		Yield (Ik	os/a)	test avg.	Wint	er Surv	ival (0-10)	Stand	Bloom	Height	Lodging	Shatter	Oil*
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(0-10)	(d)	(in.)	(%)	(%)	(%)
HyClass 154W	475	2078	1277		9.8			6.8	4/30	37		2.0	31.6
Hybristar	409	2320	1365		7.7			5.3	4/25	37		0.0	29.6
ARC98007	409	1587	998		6.8			3.5	4/29	37		0.0	32.8
KS3018	402	1990	1196		9.7			5.2	4/25	35		2.0	30.3
ARC98015	396	1756	1076		8.0			4.7	4/30	38		3.0	30.4
Wichita	365	1916	1141		9.3			3.5	4/26	35		2.0	30.6
HyClass 110W	363				7.8			3.5	4/26	37		0.0	30.7
Ceres	337	2246	1292		9.0			5.7	4/30	35		1.0	33.7
Forza	337				8.8			4.3	4/27	32		2.0	32.2
DKW13-69	284	2209	1247		8.0			3.8	4/29	34		1.0	31.9
Sumner	101	1641	871		8.8			1.3	4/28	33		1.0	33.5
Mean	602				9.2			6.0	4/27	37		1.9	31.9
LSD (0.05)	302				2.1			3.4	2.3			2.6	NS

Bold - Superior LSD Group - Unless two entries differ by more than the LSD, little confidence can be placed in one being superior to the other. Bloom is recorded as the date after January 1 when 50% of plants have one or more open flowers. *Some chaff in samples may have reduced oil content.

Yellow Jacket, Colorado

Abdel Berrada and Mark Stack, Colorado State University

Southwestern Colorado Research Center

Planted: 8/17/2007 at 6.5 lbs/a in 8-in. rows

Harvested: 7/30/2008 Herbicides: Trifluralin 1.5 pt/a

Insecticides: None
Irrigation: 16.5 in.
Previous Crop: Fallow
Soil Test: None

Fertilizer: 46-100-0-28 lbs N-P-K-S fertilizer in fall

Soil Type: Wetherill loam

Elevation: 6928 ft Latitude: 37°32'293"N

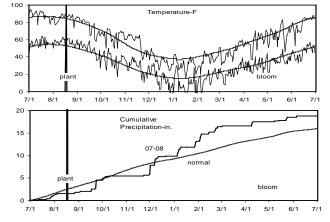


Table 23. Results for the 2008 National Winter Canola Variety Trial at Yellow Jacket, CO

Hornet 2063 835 1449 134 47 0.0 9.8 50.7 42.1 KS3254 1956 604 1280 127 45 1.7 9.0 49.7 42.9 Kronos 1948 515 1232 126 44 1.7 8.5 49.0 39.3 KS7436 1937 598 1268 125 44 3.0 7.9 50.5 43.3 Sitro 1918 990 1454 124 43 0.7 9.6 48.2 41.9 Rally 1897 876 1387 123 46 0.0 12.5 48.7 40.1 Kadore 1896 1236 1566 123 39 0.3 8.9 49.2 41.3 Safran 1892 123 39 0.3 11.1 47.0 39.6 CWH095 1864 121 42 0.7 8.7 48.5 38.7 KS3074 1833 790 1311 119 42 0.7 8.7 48.5 38.7 KS3074 1833 790 1311 119 43 0.7 6.6 49.3 41.1 DKW46-15 1808 117 43 1.0 5.9 48.5 41.4 Baldur 1804 612 1208 117 44 1.0 9.3 47.5 37.3 Visby 1802 117 40 0.7 8.3 48.5 41.3 CWH633 1774 115 44 1.0 7.8 47.5 38.3					Yield % of				Plant			Test	
Homet 2063 835 1449 134 47 0.0 9.8 50.7 42.1 KS3254 1956 604 1280 127 45 1.7 9.0 49.7 42.9 KS3254 1956 604 1280 127 45 1.7 9.0 49.7 42.9 KS3254 1956 604 1280 127 45 1.7 9.0 49.7 42.9 KS3254 1937 598 1288 125 44 1.7 8.5 49.0 39.3 KS7436 1937 598 1288 125 44 1.7 8.5 49.0 39.3 KS7436 1937 598 1288 125 44 3.0 7.9 6.6 48.2 41.9 Rally 1897 876 1387 123 46 0.0 12.5 48.7 40.1 Kadore 1896 1236 1566 123 39 0.3 8.9 49.2 41.3 Safran 1892 123 39 0.3 8.9 49.2 41.3 Safran 1892 121 42 0.7 8.7 48.5 38.7 KS3074 1833 790 1311 119 43 0.7 6.6 49.3 41.1 DKW46-15 1806 117 43 1.0 5.9 48.5 41.4 Baldur 1804 612 1208 117 43 1.0 9.3 47.5 37.3 Visby 1802 117 44 1.0 9.3 47.5 37.3 Visby 1802 117 44 1.0 9.3 47.5 37.3 Visby 1802 115 44 1.0 9.7 8.3 48.5 41.3 CWH633 1774 115 44 1.0 8.1 47.5 38.3 KS3132 1777 115 44 1.0 8.1 47.5 38.3 KS3132 1772 791 1259 112 46 2.3 7.1 48.2 38.9 KS3018 1713 580 1147 111 45 1.0 8.1 47.5 40.8 Satori 1713 580 1147 111 45 1.7 7.8 46.3 40.0 41.2 KS3132 1727 791 1259 112 106 39 0.3 11.9 47.3 39.9 KS3018 1713 580 1147 111 45 1.7 7.8 46.3 40.0 41.2 KS3132 1727 791 1259 112 106 44 1.0 7.8 2.4 48.2 41.4 Hybristar 1679 877 1278 109 106 44 1.0 7.8 2.4 48.2 41.4 Hybristar 1679 877 1278 109 44 1.0 7.8 2.4 48.2 41.4 Hybristar 1679 877 1278 109 44 1.0 7.8 2.4 48.2 41.4 Hybristar 1679 877 1278 109 44 1.0 7.8 2.4 48.2 41.4 Hybristar 1679 877 1278 109 44 1.0 7.8 2.4 48.2 41.4 Hybristar 1679 877 1278 109 44 1.0 7.8 2.4 48.2 41.4 Hybristar 1679 877 1278 109 44 1.0 7.8 2.4 48.2 41.4 Hybristar 1679 877 1278 109 44 1.0 7.8 2.4 48.2 41.4 Hybristar 1679 877 1278 109 44 1.0 7.8 2.4 48.2 41.4 Hybristar 1679 877 1278 109 44 1.0 7.8 2.4 48.2 41.4 Hybristar 1679 877 1278 109 44 1.0 7.8 2.4 48.2 41.4 Hybristar 1679 877 1278 109 44 1.0 7.8 2.4 48.2 41.4 Hybristar 1679 877 1278 109 44 1.0 7.7 8.2 48.2 41.4 Hybrist			Yield (lbs/a)	test avg.	Wii	nter Sur	vival (%)	Height	Shatter	Moisture	Weight	
KS3254 1956 604 1280 127 45 1.7 9.0 49.7 42.9 Kronos 1948 515 1232 126 44 1.7 8.5 49.0 39.3 SK57436 1937 598 1268 125 44 1.7 8.5 49.0 39.3 SK57436 1937 598 1268 125 44 1.7 8.5 49.0 39.3 SK57436 1937 598 1268 125 44 1.0 7.9 6.6 48.2 41.9 Rally 1897 876 1387 1233 46 0.0 12.5 48.7 40.1 Kadore 1896 1236 1566 123 39 0.3 8.9 49.2 41.3 Safran 1892 123 39 0.3 11.1 47.0 39.6 CWH-095 1864 121 121 42 0.0 7.8 8.7 48.5 38.6 CWH-095 1864 121 43 0.7 6.6 49.3 41.1 DKW46-15 1808 117 43 1.0 5.9 48.5 41.3 Safran 1892 117 43 1.0 5.9 48.5 41.3 Safran 1892 117 43 1.0 5.9 48.5 41.3 Safran 1892 1804 612 1208 117 43 1.0 5.9 48.5 41.3 Safran 1892 1804 612 1208 117 43 1.0 5.9 48.5 41.3 Safran 1892 1804 612 1208 117 44 1.0 9.3 48.5 41.3 Safran 1892 1804 612 1208 117 40 0.7 8.3 48.5 41.3 Safran 1892 1804 612 1208 117 44 1.0 9.3 48.5 41.3 Safran 1892 1804 1804 1804 1804 1804 1804 1804 1804	Name	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(in.)	(%)	(%)	(lbs/bu)	%
Kronos 1948 515 1232 126	Hornet	2063	835	1449	134				47	0.0	9.8	50.7	42.1
KS7436	KS3254	1956	604	1280	127				45	1.7	9.0	49.7	42.9
Sitro 1918 990 1454 124 43 0.7 9.6 48.2 41.9 Raily 1897 876 1387 123 46 0.0 12.5 48.7 40.1 12.5 48.7 40.1 12.5 48.7 40.1 12.5 48.7 40.1 12.5 48.7 40.1 12.5 48.7 40.1 12.5 48.7 40.1 12.5 48.7 40.1 12.5 48.7 40.1 12.5 48.7 40.1 12.5 48.7 40.1 12.5 48.7 40.1 12.5 48.7 40.1 12.5 48.7 40.1 12.5 48.7 40.1 12.5 48.7 40.1 12.5 48.7 40.1 12.5 48.7 48.5 38.7 12.5 48.5 48.5 38.7 12.5 48.5 48.5 38.7 12.5 48.5 38.7 12.5 48.5 38.7 12.5 48.5 38.7 12.5 48.5 38.7 12.5 48.5 38.7 12.5 48.5 38.7 12.5 48.5 38.7 12.5 48.5 38.5 12.5	Kronos	1948	515	1232	126				44	1.7	8.5	49.0	39.3
Rally 1897 876 1387 123 46 0.0 12.5 48.7 40.1 Kadore 1896 1236 1566 123 39 0.3 8.9 49.2 41.3 39.6 CWH095 1864 123 42 0.7 8.7 48.5 38.7 KS3074 1833 790 1311 119 43 0.7 6.6 49.3 41.1 Baldur 1804 612 1208 117 43 1.0 5.9 48.5 41.4 Baldur 1804 612 1208 117 44 1.0 9.3 47.5 37.3 Visby 1802 1117 44 1.0 9.3 47.5 38.3 HyClass 115W 1754 1114 42 1.0 8.1 47.5 48.5 38.7 KS3078 1774 1115 44 1.0 7.8 47.5 38.3 HyClass 115W 1754 1114 42 1.0 8.1 47.5 40.8 Satori 1743 817 1280 1113 42 1.0 8.1 47.5 40.8 Satori 1743 817 1280 1113 46 2.3 7.1 48.2 38.9 KS3018 1713 580 1147 1111 45 1.7 7.8 46.3 40.0 CWH081 1712 1111 41 2.3 8.7 48.2 41.4 Hybristar 1679 87.7 1278 109 107 41 1.0 7.8 2 48.2 41.4 Hybristar 1679 87.7 1278 109 106 42 0.0 7.3 45.5 38.3 KSS015 1634 106 107 44 1.0 7.8 8.7 48.2 41.4 BSX-501 1634 106 42 0.0 7.3 45.5 38.3 KSS015 1546 399 972 100 45 1.0 6.9 46.5 41.6 Hybrigold 1569 622 1096 102 103 45 1.0 6.9 46.5 41.6 Hybrigold 1569 622 1096 102 44 1.3 13.2 47.0 39.8 KSS015 1545 571 1058 100 45 1.0 6.9 46.5 41.6 Hybrigold 1545 571 1058 100 45 1.0 6.9 46.5 41.6 Hybrigold 1545 571 1058 100 105 42 1.3 1.0 8.3 48.2 41.4 KSS0455 1546 399 972 100 45 2.3 8.3 48.2 39.1 Hybristar 1579 KSS050 1545 571 1058 100 45 1.0 6.9 46.5 41.6 Hybrigold 1569 622 1096 102 44 1.3 13.2 47.0 39.8 KSS035 1546 399 972 100 45 2.3 8.3 48.2 39.1 Hybristori 1564 97 106 42 1.0 6.9 46.5 41.6 Hybrigold 1545 571 1058 100 44 1.3 13.2 47.0 39.8 KSS035 1546 399 972 100 45 2.3 8.3 48.2 39.1 Hybristori 1545 571 1058 100 44 1.3 13.2 47.0 39.8 KSS035 1546 399 972 100 45 2.3 8.3 3.3 48.2 39.1 Hybristori 1545 571 1058 100 44 1.3 13.2 47.0 39.8 KSS035 1546 399 972 100 45 2.3 8.8 3.3 48.2 39.1 Hybristori 1545 571 1058 100 44 1.3 13.2 47.0 39.8 KSS035 1546 399 972 100 44 1.3 10.4 49.2 38.5 KSS035 1546 99 1232 97 44 1.4 1.3 13.2 47.0 39.	KS7436	1937	598	1268	125				44	3.0	7.9	50.5	43.3
Kadore 1896 1236 1566 123 39 0.3 8.9 49.2 41.3 Safran 1892 123 39 0.3 11.1 47.0 39.6 CWH095 1864 121 42 0.7 8.7 48.5 38.7 KS3074 1833 790 1311 119 43 0.7 6.6 49.3 41.1 DKW46-15 1808 117 44 1.0 5.9 48.5 41.4 Baldur 1804 612 1208 117 40 0.7 8.3 48.5 41.3 Visby 1802 115 44 1.0 7.8 47.5 38.3 HyClass 115W 1754 115	Sitro	1918	990						43	0.7	9.6	48.2	41.9
Safran 1892 123 39 0.3 11.1 47.0 39.6 CWH095 1864 121 42 0.7 8.7 48.5 38.7 KS3074 1833 790 1311 119 43 0.7 6.6 49.3 41.1 DRW46-15 1808 117 43 1.0 5.9 48.5 41.4 Baldur 1804 612 1208 117 44 1.0 9.3 47.5 37.3 Visby 1802 115 40 0.7 8.3 48.5 41.3 CWH633 1774 1115 44 1.0 7.8 47.5 38.3 Satori 173 1817 1280 113 <	Rally	1897	876	1387	123				46	0.0	12.5	48.7	40.1
CWH095	Kadore	1896	1236	1566	123				39	0.3	8.9	49.2	41.3
KS3074 1833 790 1311 119 43 0.7 6.6 49.3 41.1 DKW46-15 1808 117 43 1.0 5.9 48.5 41.4 Baldur 1804 612 1208 117 44 1.0 9.3 47.5 37.3 Visby 1802 1117 44 1.0 9.3 47.5 37.3 Visby 1802 1115 44 1.0 7.8 48.5 41.3 CWH633 1774 115 44 1.0 7.8 47.5 38.3 HyClass 115W 1754 114 42 1.0 8.1 47.5 40.8 Satori 1743 817 1280 113 46 2.3 7.1 48.2 38.9 KS3018 1713 580 1147 111 46 2.3 7.1 48.2 38.9 KS3018 1712 1111 45 1.7 7.8 46.3 40.0 CWH081 1712 1111 45 1.7 7.8 46.3 40.0 CWH081 1712 1107 41 2.3 8.7 48.2 41.4 Hybristar 1679 877 1278 109 39 0.3 11.9 47.3 39.9 KS4158 1646 107 41 0.7 8.2 48.2 41.4 BSX-501 1634 106 106 42 0.0 7.3 45.5 38.5 Forza 1630 106 44 2.7 9.7 48.2 48.2 41.4 BSX-501 1634 106 44 2.7 9.7 48.2 41.6 ARC98015 1613 526 1069 104 45 1.0 6.9 45.5 41.6 ARC98015 1613 526 1069 104 45 1.0 6.9 45.5 41.6 ARC98015 1546 39.9 972 100 45 1.0 6.9 45.5 41.6 Hybrigold 1569 622 1096 102 45 1.0 6.9 45.5 41.6 Hybrigold 1569 622 1096 102 45 1.0 6.9 45.5 41.6 ARC97018 1545 571 1058 100 45 1.0 6.9 45.5 41.6 ARC97018 1545 571 1058 100 45 1.0 6.9 45.5 41.6 ARC97018 1545 571 1058 100 45 1.0 8.0 48.2 40.8 ARC97018 1545 594 1056 98 100 45 1.0 8.0 48.2 40.8 ARC97018 1545 594 1056 98 100 45 1.0 8.0 48.2 40.8 ARC97018 1545 571 1058 100 40 40 0.7 6.8 47.0 39.0 KS4022 1518 594 1056 98 100 42 1.3 9.3 48.3 48.2 39.1 DSV07100 1545 571 1058 100 42 1.3 9.3 48.3 43.4 KS3077 1530 925 1228 99 40 42 1.3 9.3 48.3 48.2 39.1 DSV07101 1546 594 1056 98 100 42 1.3 9.3 48.3 43.4 KS3077 1530 925 1228 99 40 42 1.3 9.3 9.0 47.5 40.6 Ceres 1517 516 1016 98 97 42 1.3 9.3 48.3 43.4 40.8 KS3077 1530 925 1228 99 40 42 1.3 9.3 9.3 48.3 43.4 40.8 KS3077 1530 925 1228 99 -	Safran	1892							39	0.3	11.1	47.0	39.6
DKW46-15 1808 1117 43 1.0 5.9 48.5 41.4 Baldur 1804 612 1208 1177 44 1.0 9.3 47.5 37.3 37.3 CWH633 1774 1115 44 1.0 7.8 3 48.5 41.3 CWH633 1774 115 44 1.0 7.8 47.5 38.3 HyClass 115W 1754 114 42 1.0 8.1 47.5 40.8 Satori 1743 817 1280 1113 42 1.0 8.1 47.5 40.8 Satori 1743 817 1280 1113 46 2.3 7.1 48.2 38.9 KS3108 1713 580 1147 1111 45 1.7 7.8 46.3 40.0 CWH081 1712 1111 45 1.7 7.8 46.3 40.0 CWH081 1712 1111 45 1.7 7.8 46.3 40.0 CWH081 1712 1111 45 1.7 7.8 46.3 40.0 SW 11147 111 45 1.7 7.8 46.3 40.0 CWH081 1713 580 1147 1111 45 1.7 7.8 46.3 40.0 CWH081 1714 107 41 1.2 3 8.7 48.2 41.4 BSX-501 1634 107 41 1.0 7.8 2 48.2 41.4 BSX-501 1634 106 107 41 0.7 8.2 48.2 41.4 BSX-501 1634 106 106 42 0.0 7.3 45.5 38.5 Forza 1630 106 42 0.0 7.3 45.5 38.5 Forza 1630 106 44 2.7 9.7 48.2 41.6 ARC98007 1620 665 1142 105 48 3.0 7.9 48.0 41.3 HyClass 107W 1566 103 103 45 1.0 6.9 46.5 41.6 ARC98015 1613 526 1069 104 48 3.0 7.9 48.0 41.3 HyClass 107W 1566 103 103 45 1.0 6.9 46.5 41.6 SS3077 1530 9.7 7 1528 9.7 7 100 44 1.3 13.2 47.0 39.8 KS9135 1546 399 972 100 45 2.3 8.3 48.2 39.1 DSV07100 1545 100 45 2.3 8.3 48.2 39.1 DSV07100 1545 100 46 6.7 12.8 48.0 40.8 ARC97018 1545 571 1058 100 45 2.3 8.3 48.2 39.1 DSV07100 1545 100 0 45 2.3 8.3 48.2 39.1 DSV07100 1545 100 0 45 2.3 8.3 48.2 39.1 DSV07100 1545 100 0 45 5 2.3 8.3 3.3 48.2 39.1 DSV07100 1545 100 0 45 5 2.3 8.3 3.3 48.2 39.1 DSV07100 1545 100 0 45 5 2.3 8.3 3.3 48.2 39.1 DSV07100 1545 100 0 45 5 2.3 8.3 3.3 48.2 39.1 DSV07100 1545 100 0 45 5 2.3 8.3 3.3 48.2 39.1 DSV07100 1545 100 0 45 5 2.3 8.3 3.3 48.2 39.1 DSV07100 1545 100 0 45 5 2.3 8.3 3.3 48.2 39.1 DSV07100 1545 100	CWH095	1864			121				42	0.7	8.7	48.5	38.7
Baldur 1804 612 1208 117 44 1.0 9.3 47.5 37.3 Visby 1802 117 40 0.7 8.3 48.5 41.3 CWH633 1774 1115 44 1.0 7.8 47.5 38.3 HyClass 115W 1754 1114 44 1.0 8.1 47.5 38.3 Satori 1743 817 1280 113 46 2.3 7.1 48.2 38.9 KS318 1713 580 1147 111 45 1.7 7.8 48.2 41.4 Hybristar 1679 877 1278 109 41 2.3 8.7 48.2 41.4 Hybristar 1679 877 1278 <td>KS3074</td> <td>1833</td> <td>790</td> <td>1311</td> <td>119</td> <td></td> <td></td> <td></td> <td>43</td> <td>0.7</td> <td>6.6</td> <td>49.3</td> <td>41.1</td>	KS3074	1833	790	1311	119				43	0.7	6.6	49.3	41.1
Visby 1802 1117 40 0.7 8.3 48.5 41.3 CWH633 1774 115 44 1.0 7.8 47.5 38.3 HyClass 115W 1754 114 42 1.0 8.1 47.5 40.8 Satori 1743 817 1280 113 42 1.0 8.1 47.5 40.8 Satori 1743 817 1280 113 46 2.3 7.1 48.2 38.9 KS3018 1713 580 1147 111 46 2.3 7.1 48.2 38.9 KS3018 1713 580 1147 111 45 1.7 7.8 46.3 40.0 CWH081 1712 111 41 2.3 8.7 48.2 41.4 Hybristar 1679 877 1278 109 39 0.3 11.9 47.3 39.9 KS4158 1646 107 41 0.7 8.2 48.2 41.4 BSX-501 1634 106 41 0.7 8.2 48.2 41.4 BSX-501 1634 106 42 0.0 7.3 45.5 38.5 Forza 1630 106 42 0.0 7.3 45.5 38.5 Forza 1630 106 44 0.7 8.2 48.2 41.6 ARC98015 1613 526 1069 104 44 2.7 9.7 48.2 41.6 ARC98015 1633 526 1069 104 48 3.0 7.9 48.0 41.3 HyClass 107W 1586 103 103 45 1.0 6.9 46.5 41.6 Hybrigold 1569 622 1096 102 44 1.3 13.2 47.0 39.8 KS9135 1546 399 972 100 45 2.3 8.3 48.2 39.1 DSV07100 1545 571 1058 100 40 0.7 6.8 47.0 39.8 KS9135 1546 399 972 100 45 2.3 8.3 48.2 39.1 DSV07101 1545 571 1058 100 44 0.7 6.8 47.0 39.0 KS4022 1518 594 1056 98 100 0.7 6.8 47.0 39.0 KS4022 1518 594 1056 98 97 42 1.3 9.3 48.3 43.4 KS4085 1494 820 1157 97 45 1.7 7.7 46.5 40.1 Wichita 1494 820 1157 97 45 1.7 7.7 46.5 40.1 Wichita 1494 820 1157 97 45 1.7 7.7 46.5 40.1 Wichita 1494 820 1157 97 45 1.7 7.7 46.5 40.3 CWH116 1486 96 96 39 0.3 10.4 49.2 38.5	DKW46-15	1808			117				43	1.0	5.9	48.5	41.4
CWH633	Baldur	1804	612	1208	117				44	1.0	9.3	47.5	37.3
HyClass 115W 1754 114 42 1.0 8.1 47.5 40.8 Satori 1743 817 1280 113 39 0.0 8.3 48.0 41.2 KS3132 1727 791 1259 112 46 2.3 7.1 48.2 38.9 KS3018 1713 580 1147 111 45 1.7 7.8 46.3 40.0 CWH081 1712 111 41 2.3 8.7 48.2 41.4 Hybristar 1679 877 1278 109 39 0.3 11.9 47.3 39.9 KS4158 1664 106 42 0.0 7.3 45.5 38.5 Forza 1620 665 1142	Visby	1802			117				40	0.7	8.3	48.5	41.3
Satori 1743 817 1280 113 39 0.0 8.3 48.0 41.2 KS3132 1727 791 1259 112 46 2.3 7.1 48.2 38.9 KS3018 1713 580 1147 111 45 1.7 7.8 46.3 40.0 CWH081 1712 1111 41 2.3 8.7 48.2 41.4 Hybristar 1679 877 1278 109 39 0.3 11.9 47.3 39.9 KS4158 1646 106 41 0.7 8.2 48.2 41.4 BSX-501 1634 106 42 0.0 7.3 45.5 38.5 Forza 1630 106	CWH633	1774			115				44	1.0	7.8	47.5	38.3
KS3132	HyClass 115W	1754			114				42	1.0	8.1	47.5	40.8
KS3018 1713 580 1147 1111 45 1.7 7.8 46.3 40.0 CWH081 1712 1111 41 2.3 8.7 48.2 41.4 Hybristar 1679 877 1278 109 39 0.3 11.9 47.3 39.9 KS4158 1646 107 107 41 0.7 8.2 48.2 41.4 BSX-501 1634 106 42 0.0 7.3 45.5 38.5 Forza 1630 106 44 2.7 9.7 48.2 41.6 ARC98007 1620 665 1142 105 44 2.7 9.7 48.2 41.6 ARC98015 1613 526 1069 104 48 3.0 7.9 48.0 41.3 HyClass 107W 1586 103 45 1.0 6.9 46.5 41.6 Hybrigoid 1569 622 1096 102 45 1.0 6.9 46.5 41.6 Hybrigoid 1569 622 1096 102 45 2.3 8.3 48.2 39.1 DSV07100 1545 100 45 2.3 8.3 48.2 39.1 DSV07100 1545 100 45 2.3 8.3 48.2 39.1 DSV07100 1545 571 1058 100 46 6.7 12.8 48.0 40.8 ARC97018 1545 571 1058 100 40 0.7 6.8 47.0 39.0 KS4022 1518 594 1056 98 40 0.7 6.8 47.0 39.0 KS4022 1518 594 1056 98 40 0.7 6.8 47.0 39.0 KS4022 1518 594 1056 98 40 0.7 6.8 47.0 39.0 KS4022 1518 594 1056 98 42 1.3 9.3 48.3 43.4 KS4085 1495 969 1232 97 42 1.3 9.3 48.3 43.4 KS4085 1495 969 1232 97 45 1.7 7.7 46.5 40.6 Ceres 1517 516 1016 98 97 45 1.7 7.7 46.5 40.1 Wichita 1494 820 1157 97 45 1.7 7.7 46.5 40.1 Wichita 1494 820 1157 97 43 0.7 8.9 50.0 42.2 Taurus 1444 509 977 94 43 0.7 8.9 50.0 42.2	Satori	1743	817	1280	113				39	0.0	8.3	48.0	41.2
CWH081 1712 111 41 2.3 8.7 48.2 41.4 Hybristar 1679 877 1278 109 39 0.3 11.9 47.3 39.9 KS4158 1646 107 41 0.7 8.2 48.2 41.4 BSX-501 1634 106 42 0.0 7.3 45.5 38.5 Forza 1630 106 42 0.0 7.3 45.5 38.5 Forza 1630 106 42 0.0 7.3 45.5 38.5 Forza 1630 106 42 0.0 7.3 48.2 41.6 ARC98015 1613 526 1069 <	KS3132	1727	791	1259	112				46	2.3	7.1	48.2	38.9
Hybristar 1679 877 1278 109 39 0.3 11.9 47.3 39.9 KS4158 1646 107 41 0.7 8.2 48.2 41.4 BSX-501 1634 106 42 0.0 7.3 45.5 38.5 Forza 1630 106 37 0.3 12.0 45.2 38.8 ARC98015 1633 526 1069 104 44 2.7 9.7 48.2 41.6 HyClass 107W 1586 103 45 1.0 6.9 46.5 41.6 Hybrigold 1569 622 1096 102 44 1.3 13.2 47.0 39.8 KS9135 1546 399<	KS3018	1713	580	1147	111				45	1.7	7.8	46.3	40.0
KS4158 1646 107 41 0.7 8.2 48.2 41.4 BSX-501 1634 106 42 0.0 7.3 45.5 38.5 Forza 1630 106 37 0.3 12.0 45.2 38.8 ARC98015 1620 665 1142 105 44 2.7 9.7 48.2 41.6 ARC98015 1613 526 1069 104 48 3.0 7.9 48.0 41.3 HyClass 107W 1586 103 45 1.0 6.9 46.5 41.6 Hybrigold 1569 622 1096 102 44 1.3 13.2 47.0 39.8 KS9135 1546 399 972 100 45 2.3 8.3 48.2 4	CWH081	1712			111				41	2.3	8.7	48.2	41.4
BSX-501 1634 106 42 0.0 7.3 45.5 38.5 Forza 1630 106 37 0.3 12.0 45.2 38.8 ARC98007 1620 665 1142 105 44 2.7 9.7 48.2 41.6 ARC98015 1613 526 1069 104 48 3.0 7.9 48.0 41.3 HyClass 107W 1586 103 45 1.0 6.9 46.5 41.6 Hybrigold 1569 622 1096 102 44 1.3 13.2 47.0 39.8 KS9135 1546 399 972 100 45 2.3 8.3 48.2 39.1 DSV07100 1545 100 46 6.7 12.8 48.0 <t< td=""><td>Hybristar</td><td>1679</td><td>877</td><td>1278</td><td>109</td><td></td><td></td><td></td><td>39</td><td>0.3</td><td>11.9</td><td>47.3</td><td>39.9</td></t<>	Hybristar	1679	877	1278	109				39	0.3	11.9	47.3	39.9
Forza 1630 106 37 0.3 12.0 45.2 38.8 ARC98007 1620 665 1142 105 44 2.7 9.7 48.2 41.6 ARC98015 1613 526 1069 104 48 3.0 7.9 48.0 41.3 HyClass 107W 1586 103 45 1.0 6.9 46.5 41.6 Hybrigold 1569 622 1096 102 44 1.3 13.2 47.0 39.8 KS9135 1546 399 972 100 45 2.3 8.3 48.2 39.1 DSV07100 1545 100 46 6.7 12.8 48.0 40.8 KS3077 1530 925<	KS4158	1646			107				41	0.7	8.2	48.2	41.4
ARC98007	BSX-501	1634			106				42	0.0	7.3	45.5	38.5
ARC98015	Forza	1630			106				37	0.3	12.0	45.2	38.8
HyClass 107W 1586 103 45 1.0 6.9 46.5 41.6 Hybrigold 1569 622 1096 102 44 1.3 13.2 47.0 39.8 KS9135 1546 399 972 100 45 2.3 8.3 48.2 39.1 DSV07100 1545 100 46 6.7 12.8 48.0 40.8 ARC97018 1545 571 1058 100 43 1.0 8.0 48.2 40.8 KS3077 1530 925 1228 99 40 0.7 6.8 47.0 39.0 KS4022 1518 594 1056 98 40 2.3 9.0 47.5 40.6 Ceres 1517 516 1016 98 42 6.0 7.9 48.7 39.7	ARC98007	1620	665	1142	105				44	2.7	9.7	48.2	41.6
Hybrigold 1569 622 1096 102 44 1.3 13.2 47.0 39.8 KS9135 1546 399 972 100 45 2.3 8.3 48.2 39.1 DSV07100 1545 100 46 6.7 12.8 48.0 40.8 ARC97018 1545 571 1058 100 43 1.0 8.0 48.2 40.8 KS3077 1530 925 1228 99 40 0.7 6.8 47.0 39.0 KS4022 1518 594 1056 98 40 2.3 9.0 47.5 40.6 Ceres 1517 516 1016 98 42 6.0 7.9 48.7 39.7 Hybrisurf 1504 97 42 1.3 9.3 48.3 43.4 <t< td=""><td>ARC98015</td><td>1613</td><td>526</td><td>1069</td><td>104</td><td></td><td></td><td></td><td>48</td><td>3.0</td><td>7.9</td><td>48.0</td><td>41.3</td></t<>	ARC98015	1613	526	1069	104				48	3.0	7.9	48.0	41.3
KS9135 1546 399 972 100 45 2.3 8.3 48.2 39.1 DSV07100 1545 100 46 6.7 12.8 48.0 40.8 ARC97018 1545 571 1058 100 43 1.0 8.0 48.2 40.8 KS3077 1530 925 1228 99 40 0.7 6.8 47.0 39.0 KS4022 1518 594 1056 98 40 2.3 9.0 47.5 40.6 Ceres 1517 516 1016 98 42 6.0 7.9 48.7 39.7 Hybrisurf 1504 97 42 1.3 9.3 48.3 43.4 KS4085 1495 969 1232 97 45 1.7 7.7 46.5 40.1 Wichita 1494 820 1157 97 45 1.7 7.7 46.5 40.3 CWH116 1486 96 39 0.3 10.3 44.3 39.6 Abilene 1481 751 1116 96 43 0.7 8.9 50.0 42.2 Taurus 1444 509 977 94 42 1.3 10.4 49.2 38.5	HyClass 107W	1586			103				45	1.0	6.9	46.5	41.6
DSV07100 1545 100 46 6.7 12.8 48.0 40.8 ARC97018 1545 571 1058 100 43 1.0 8.0 48.2 40.8 KS3077 1530 925 1228 99 40 0.7 6.8 47.0 39.0 KS4022 1518 594 1056 98 40 2.3 9.0 47.5 40.6 Ceres 1517 516 1016 98 42 6.0 7.9 48.7 39.7 Hybrisurf 1504 97 42 1.3 9.3 48.3 43.4 KS4085 1495 969 1232 97 45 1.7 7.7 46.5 40.1 Wichita 1494 820 1157 97 45 1.7 7.7 46.5 40.3 CWH116 1486 96 39 0.3 10.3 44.3 39.6 Abilene 1481 751 1116 96 43 0.7 8.9 50.0 42.2 Taurus 1444 509 977 94 42 1.3 10.4 49.2 38.5	Hybrigold	1569	622	1096	102				44	1.3	13.2	47.0	39.8
ARC97018 1545 571 1058 100 43 1.0 8.0 48.2 40.8 KS3077 1530 925 1228 99 40 0.7 6.8 47.0 39.0 KS4022 1518 594 1056 98 40 2.3 9.0 47.5 40.6 Ceres 1517 516 1016 98 42 6.0 7.9 48.7 39.7 Hybrisurf 1504 97 42 1.3 9.3 48.3 43.4 KS4085 1495 969 1232 97 45 1.7 7.7 46.5 40.1 Wichita 1494 820 1157 97 45 1.7 7.7 46.5 40.3 CWH116 1486 96 39 0.7 7.7 46.5 40.3 CWH116 1486 96 43 0.7 8.9 50.0 42.2 Taurus 1444 509 977 94 42 1.3 10.4 49.2 38.5	KS9135	1546	399	972	100				45	2.3	8.3	48.2	39.1
KS3077 1530 925 1228 99 40 0.7 6.8 47.0 39.0 KS4022 1518 594 1056 98 40 2.3 9.0 47.5 40.6 Ceres 1517 516 1016 98 42 6.0 7.9 48.7 39.7 Hybrisurf 1504 97 42 1.3 9.3 48.3 43.4 KS4085 1495 969 1232 97 45 1.7 7.7 46.5 40.1 Wichita 1494 820 1157 97 45 1.7 7.7 46.5 40.3 CWH116 1486 96 96 39 0.3 10.3 44.3 39.6 Abilene 1481 751 1116 96 43 0.7 8.9 50.0 42.2 Taurus 1444 509 977 94 42 1.3 10.4 49.2 38.5	DSV07100	1545			100				46	6.7	12.8	48.0	40.8
KS4022 1518 594 1056 98 40 2.3 9.0 47.5 40.6 Ceres 1517 516 1016 98 42 6.0 7.9 48.7 39.7 Hybrisurf 1504 97 97 42 1.3 9.3 48.3 43.4 KS4085 1495 969 1232 97 45 1.7 7.7 46.5 40.1 Wichita 1494 820 1157 97 39 0.7 7.7 46.5 40.3 CWH116 1486 96 96 39 0.3 10.3 44.3 39.6 Abilene 1481 751 1116 96 43 0.7 8.9 50.0 42.2 Taurus 1444 509 977 94 42 1.3 10.4 49.2 38.5	ARC97018	1545	571	1058	100				43	1.0	8.0	48.2	40.8
Ceres 1517 516 1016 98 42 6.0 7.9 48.7 39.7 Hybrisurf 1504 97 42 1.3 9.3 48.3 43.4 KS4085 1495 969 1232 97 45 1.7 7.7 46.5 40.1 Wichita 1494 820 1157 97 39 0.7 7.7 46.5 40.3 CWH116 1486 96 39 0.3 10.3 44.3 39.6 Abilene 1481 751 1116 96 43 0.7 8.9 50.0 42.2 Taurus 1444 509 977 94 42 1.3 10.4 49.2 38.5	KS3077	1530	925	1228	99				40	0.7	6.8	47.0	39.0
Hybrisurf 1504 97 42 1.3 9.3 48.3 43.4 KS4085 1495 969 1232 97 45 1.7 7.7 46.5 40.1 Wichita 1494 820 1157 97 39 0.7 7.7 46.5 40.3 CWH116 1486 96 39 0.3 10.3 44.3 39.6 Abilene 1481 751 1116 96 43 0.7 8.9 50.0 42.2 Taurus 1444 509 977 94 42 1.3 10.4 49.2 38.5	KS4022	1518	594	1056	98				40	2.3	9.0	47.5	40.6
KS4085 1495 969 1232 97 45 1.7 7.7 46.5 40.1 Wichita 1494 820 1157 97 39 0.7 7.7 46.5 40.3 CWH116 1486 96 96 39 0.3 10.3 44.3 39.6 Abilene 1481 751 1116 96 43 0.7 8.9 50.0 42.2 Taurus 1444 509 977 94 42 1.3 10.4 49.2 38.5	Ceres	1517	516	1016	98				42	6.0	7.9	48.7	39.7
Wichita 1494 820 1157 97 39 0.7 7.7 46.5 40.3 CWH116 1486 96 39 0.3 10.3 44.3 39.6 Abilene 1481 751 1116 96 43 0.7 8.9 50.0 42.2 Taurus 1444 509 977 94 42 1.3 10.4 49.2 38.5	Hybrisurf	1504			97				42	1.3	9.3	48.3	43.4
CWH116 1486 96 39 0.3 10.3 44.3 39.6 Abilene 1481 751 1116 96 43 0.7 8.9 50.0 42.2 Taurus 1444 509 977 94 42 1.3 10.4 49.2 38.5	KS4085	1495	969	1232	97				45	1.7	7.7	46.5	40.1
Abilene 1481 751 1116 96 43 0.7 8.9 50.0 42.2 Taurus 1444 509 977 94 42 1.3 10.4 49.2 38.5	Wichita	1494	820	1157	97				39	0.7	7.7	46.5	40.3
Taurus 1444 509 977 94 42 1.3 10.4 49.2 38.5	CWH116	1486			96				39	0.3	10.3	44.3	39.6
	Abilene	1481	751	1116	96				43	0.7	8.9	50.0	42.2
DKW47-15 1433 93 40 1.3 6.4 44.5 37.9	Taurus	1444	509	977	94				42	1.3		49.2	38.5
	DKW47-15	1433			93				40	1.3	6.4	44.5	37.9
ARC2180-1 1421 451 936 92 42 1.7 12.1 48.6 43.2	ARC2180-1	1421	451	936	92				42		12.1	48.6	43.2
DKW13-69 1409 376 893 91 42 1.0 8.8 48.7 41.5	DKW13-69	1409	376	893	91				42	1.0	8.8	48.7	41.5

Table 23. Results for the 2008 National Winter Canola Variety Trial at Yellow Jacket, CO

			·	Yield % of				Plant			Test	
		Yield (I	bs/a)	test avg.	Wii	nter Sur	vival (%)	Height	Shatter	Moisture	Weight	Oil
Name	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(in.)	(%)	(%)	(lbs/bu)	%
Sumner	1395	714	1054	90				40	0.0	6.1	44.2	38.3
Dimension	1378			89				42	2.7	10.6	45.7	41.2
KS3302	1362	578	970	88				44	0.3	7.1	47.5	37.6
NPZ0791RR	1312			85				40	4.7	10.1	46.2	40.3
ARC97019	1311	590	950	85				46	5.3	10.5	47.2	41.5
DKW41-10	1290			84				39	0.7	10.5	46.8	38.3
DKW45-10	1272			82				37	2.0	8.7	46.0	37.6
BSX-567	1235			80				42	0.7	7.4	46.8	37.8
Flash	1194	843	1018	77				43	0.3	18.0	47.3	43.0
HyClass 154W	1187	674	931	77				39	0.7	10.9	45.3	39.7
HyClass 110W	1183			77				37	1.0	11.6	45.3	38.6
Virginia	1159	544	851	75				36	0.3	12.1	43.0	37.1
CWH111	1114			72				39	0.0	16.8	40.3	36.8
Plainsman	644	474	559	42				47	10.7	11.9	47.3	39.5
Jetton	612	768	690	40				44	10.7	11.7	46.0	36.9
Mean	1544							42	1.7	9.5	47.3	40.1
CV	19							8	130.2	20.6	4.2	2.1
LSD (0.05)	472							5	3.6	3.2	3.2	NS

Bold - Superior LSD Group - Unless two entries differ by more than the LSD, little confidence can be placed in one being superior to the other. Yields adjusted to 10% moisture.

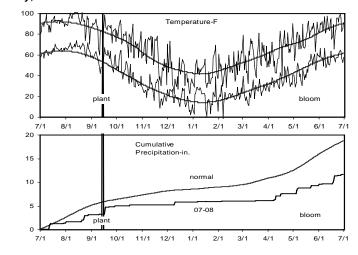
Garden City, Kansas

Johnathon Holman, Kansas State University Southwest Research-Extension Center, Garden City

Planted: 9/14/2007 at 5 lbs/a 7/9/2008 Harvested: Irrigation: Date 10/1/2007 1.35 10/30/2007 3.75

> 4/8/2008 5.18 5/15/2008 3.50 6/5/2008 2.27

Previous Crop: Soybean Soil Test: None


Fertility: 10 lbs 11-52-0 & 10 lbs. S in 1in.x1.5 in. band

Latitude: 37°99'N Elevation: 2888 ft

Comments: Severe hail damage was noted in streaks

across field from storm on 6/20/2008.

in.

				Yield % of	Fall	Fall	Spring	Spring	Plant			Test	
Entry	Yie	eld (lbs/a)		test avg.	Stand	Vigor*	Stand	Vigor*	Height	Shatter	Moisture	Weight	Oil
	2008	2007	2-Yr.	2008	(0-10)	(1-5)	(0-10)	(1-5)	(in.)	(%)	(%)	(lbs/bu)	(%)
KS4158	1611			155	6.2	4.0	6.2	4.3	55	5.0	8.0	46.9	36.1
Rally	1577	2482	2029	152	6.3	4.3	6.3	4.8	57	2.3	8.1	44.3	36.0
Kadore	1549	2432	1990	149	3.7	3.5	3.7	4.0	51	6.7	7.1	47.6	35.5
KS4022	1526	2466	1996	147	5.0	3.8	4.7	4.3	56	2.0	8.3	44.8	35.9
Virginia	1442	2954	2198	139	7.5	4.8	7.5	5.0	52	7.0	6.9	46.6	34.6
Dimension	1426			138	8.5	4.7	8.3	5.0	55	3.3	8.7	43.5	36.2
Hybrigold	1395	3014	2205	135	6.0	4.3	5.7	4.5	53	10.0	8.8	46.2	35.2
DSV07100	1375			133	6.7	4.0	6.3	4.8	56	3.7	7.5	46.6	37.2
Sitro	1363	2885	2124	132	7.5	4.7	7.3	5.0	55	5.0	8.3	43.6	36.0
Satori	1360	2762	2061	131	6.2	4.3	5.7	4.3	54	6.7	7.1	46.2	38.2
Taurus	1357	3533	2445	131	6.0	4.2	6.0	4.7	56	8.3	9.2	45.7	35.5
KS4085	1338	2985	2161	129	7.5	4.0	7.5	5.0	57	6.7	8.1	46.8	34.5
KS3254	1285	2104	1694	124	6.3	4.0	6.2	4.5	55	3.3	7.6	45.9	35.8
Safran	1285			124	6.7	4.2	6.5	5.0	55	3.7	9.2	46.8	36.0
Hybristar	1272	2994	2133	123	5.8	4.0	5.0	4.8	54	8.3	7.5	44.0	36.4
ARC98007	1257	2524	1890	121	6.2	4.0	6.0	4.8	55	6.7	7.9	45.3	33.1
Baldur	1256	3651	2453	121	6.0	4.2	6.0	4.8	55	10.0	9.9	46.5	36.3
KS7436	1242	2836	2039	120	5.3	3.7	5.3	4.7	55	6.7	7.2	47.0	34.1
KS3132	1208	2893	2050	117	7.8	4.5	7.5	4.5	58	13.3	8.3	44.1	33.9
ARC97018	1201	3000	2101	116	6.3	4.2	7.2	4.8	58	8.3	7.5	45.6	35.8
ARC2180-1	1198	3214	2206	116	6.0	4.2	5.7	5.0	56	8.3	7.4	46.8	37.9
CWH116	1162			112	6.2	3.8	6.2	4.5	53	5.0	8.7	43.1	35.6
KS9135	1154	2852	2003	111	5.7	4.2	5.5	4.8	58	6.7	7.0	46.5	35.2
Forza	1112			107	5.5	4.0	5.0	4.5	52	6.7	10.3	41.6	37.3
46W14	1101			106	8.2	4.8	8.0	4.8	54	10.0	7.2	44.6	33.8
CWH095	1086			105	4.7	3.5	4.7	4.3	52	3.3	6.6	44.4	37.1
Kronos	1074	2887	1980	104	4.0	4.0	4.0	4.8	56	6.7	8.6	46.4	35.3
CWH081	1043			101	4.5	3.5	4.3	4.0	50	9.0	6.7	44.6	34.9
HyClass 110W	1034			100	4.7	3.8	4.7	4.8	49	20.0	7.0	46.1	36.5
ARC98015	1015	2698	1857	98	6.3	4.2	6.2	5.0	58	10.7	9.2	44.4	34.1
Flash	1010	2621	1816	98	6.2	4.2	5.7	5.0	58	1.7	8.6	43.1	36.2
KS3077	1004	2492	1748	97	6.8	4.5	6.8	4.8	58	14.3	9.4	44.4	34.2
NPZ0791RR	998			96	7.0	4.2	6.3	4.2	55	5.0	9.1	41.4	34.8
ARC97019	993	3177	2085	96	5.5	4.0	5.5	5.0	57	7.0	8.2	43.1	35.1
CWH111	981			95	7.0	4.3	7.0	5.0	48	21.7	9.3	41.0	33.2
Hornet	949	2446	1697	92	6.0	3.8	6.0	5.0	56	3.3	8.8	44.3	35.0
Visby	925			89	5.7	3.7	5.7	5.0	51	23.3	7.0	43.9	35.5
KS3302	904	3155	2029	87	7.3	4.3	7.3	4.7	54	16.7	8.7	42.5	36.2
HyClass 154W	894	3162	2028	86	7.5	4.2	7.3	4.3	53	5.0	7.4	44.5	34.6

Table 24. Results from the 2008 National Winter Canola Variety Trial at Garden City, KS

				Yield % of	Fall	Fall	Spring	Spring	Plant			Test	
Entry	Yie	eld (lbs/a)		test avg.	Stand	Vigor*	Stand	Vigor*	Height	Shatter	Moisture	Weight	Oil
	2008	2007	2-Yr.	2008	(0-10)	(1-5)	(0-10)	(1-5)	(in.)	(%)	(%)	(lbs/bu)	(%)
DKW41-10	878			85	5.5	3.8	5.3	4.7	51	16.7	8.6	46.2	35.9
KS3074	812	1990	1401	78	8.7	4.3	8.3	4.3	53	23.3	7.3	42.8	33.8
DKW13-69	807	2683	1745	78	5.5	4.0	5.2	4.0	53	10.0	7.9	43.0	34.6
Ceres	782	2983	1883	75	6.8	3.8	6.0	4.3	54	13.3	8.3	47.6	37.9
45D03	780			75	5.7	4.0	5.3	4.0	50	21.7	6.9	46.6	34.6
HyClass 115W	770			74	5.3	3.7	5.3	4.7	52	36.7	7.1	44.1	32.9
Abilene	753	2947	1850	73	6.0	3.7	5.3	4.8	52	15.0	8.2	43.3	32.7
DKW46-15	746			72	4.8	3.7	4.8	4.5	52	53.3	6.5	46.6	35.2
DKW45-10	742			72	5.8	4.2	5.8	5.0	52	36.7	8.1	40.8	33.9
Wichita	737	2725	1731	71	6.0	3.8	6.0	4.7	51	45.0	6.8	44.5	34.3
BSX-501	735			71	5.2	3.8	5.2	4.3	53	11.7	9.3	42.6	36.6
Hybrisurf	704			68	6.7	4.3	5.8	4.8	50	25.0	7.1	44.8	35.5
KS3018	702	3007	1854	68	6.5	4.3	6.5	5.0	54	25.0	7.1	42.9	36.7
46W99	602			58	5.8	3.8	5.3	5.0	52	31.7	9.7	47.0	33.7
DKW47-15	602			58	4.2	3.3	4.2	4.7	50	48.3	7.5	41.6	36.9
CWH633	592			57	6.5	3.7	6.5	4.7	50	40.0	7.6	41.7	35.8
Sumner	579	2912	1745	56	4.8	3.7	4.8	4.8	50	48.3	7.8	41.3	35.8
BSX-567	478			46	5.0	3.3	5.0	4.0	51	28.3	7.3	41.7	37.1
HyClass 107W	324			31	2.7	3.0	2.7	4.0	48	11.7	7.2	43.1	34.0
Jetton		3265		0	8.0	2.0	0.5	3.0	43	10.0	0.0	0.0	33.3
Plainsman		2065		0	1.0	1.8	0.7	3.5	44	15.0	0.0	0.0	36.2
Mean	1036	2811	1924		5.8	3.9	5.7	4.6	53	14.6	8.1	44.7	35.4
CV	26	17			24.9	11.1	25.1	8.0	5	84.0	16.7	5.2	3.9
LSD (0.05)	429	851			2.4	0.7	2.3	0.6	4	19.9	NS	3.8	2.8

Bold - Superior LSD Group - Unless two entries differ by more than the LSD, little confidence can be placed in one being superior to the other. *Vigor rated on a scale of 1=poor to 5=excellent.

Mark Claassen, Harvey County Experiment Field Kansas State University

Planted: 9/13/2007 at 5 lbs/a in 9-in. rows Harvested: 6/23/2008 and 6/25/2008

Herbicides: Treflan 1.5 pt/a

Insecticides: None

Fertility: 30-30-0 N-P-K fertilizer in the fall

80-0-0 N-P-K fertilizer in the spring

Previous Crop: Canola

Soil Type: Ladysmith silty clay loam

Elevation: 1499 ft Latitude: 38°08'N

Comments: Winter injury to crowns caused some

plots to severely lodge at maturation.

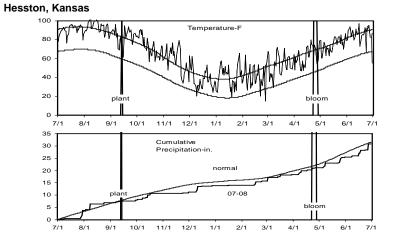


Table 25. Results from the 2008 National Winter Canola Variety Trial at Hesston, KS

F4		W-1-1 (II	. 1-1	Yield % of	Fall	50%	Plant	Ladaina	Chattar	Maiotura	Test	
Entry	2008	Yield (lbs 2007	3/a) 2-Yr.	test avg. 2008	Stand	Bloom	Height (in.)	Lodging (%)	Shatter	Moisture (%)	Weight (lbs/bu)	Oil (%)
1/00400					(0-10)	(day)			(%)			
KS3132	1365	1421	1393	168	7.7	114	47	0.3	6.7	10.5	49.5	37.0
KS4022	1364	961	1162	168	5.3	116	47	0.3	1.0	13.1	48.8	37.8
KS3077	1295	1156	1225	159	7.3	116	47	12.0	1.0	10.7	52.1	36.5
KS4085	1258	908	1083	155	8.3	114	47	3.3	1.0	10.2	51.2	36.6
KS4158	1241			153	7.7	113	44	8.7	2.0	9.5	51.9	38.6
KS3254	1239	1617	1428	152	8.0	116	44	0.7	0.3	11.5	51.6	38.0
KS9135*	1199	1260	1229	148	6.7	115	47	28.3	1.0	11.0	51.4	36.3
CWH095	1178			145	7.7	114	40	0.3	5.3	9.6	50.6	37.4
Virginia	1174	815	995	144	8.0	115	40	3.7	0.7	9.4	51.5	36.9
Wichita	1166	1010	1088	143	8.0	114	42	10.0	3.7	9.0	49.1	37.2
Kadore	1116	1600	1358	137	7.0	114	39	10.7	0.7	10.9	52.3	36.7
KS3074	1079	1346	1213	133	7.3	114	42	26.7	0.3	10.2	52.0	37.2
DSV07100	1066			131	7.3	114	43	7.0	1.7	9.9	51.8	39.1
KS3302	1040	813	926	128	7.7	113	43	12.0	2.3	9.7	50.6	37.5
HyClass 154W	1029	1121	1075	127	4.7	117	41	8.3	0.3	11.1	50.7	36.9
ARC97019	1012	769	891	125	6.7	114	45	31.7	4.0	10.0	51.5	37.2
CWH081	995			122	8.0	114	42	3.3	2.3	9.5	48.9	37.3
KS7436	975	789	882	120	6.7	116	43	26.7	3.7	10.3	51.1	37.2
BSX-501	944			116	6.7	115	45	7.0	2.0	9.9	52.8	36.7
ARC2180-1	937	867	902	115	7.7	114	43	50.0	2.3	10.4	51.6	37.4
ARC97018	934	886	910	115	5.7	114	45	30.0	4.0	11.2	49.1	36.6
DKW46-15	923			114	4.3	115	42	7.8	1.0	10.2	49.7	37.4
NPZ0791RR	900			111	7.0	114	41	3.3	6.7	10.6	47.4	38.8
Safran	897			110	8.3	113	43	15.0	11.7	9.3	51.4	37.0
Ceres	855	1299	1077	105	7.7	114	41	30.1	5.0	9.0	50.2	37.6
46W99*	842			104	7.7	113	43	73.3	5.0	8.3	53.0	38.5
Baldur	817	321	569	101	6.7	113	41	49.7	5.5	10.0	52.0	36.7
KS3018*	813	943	878	100	7.7	113	44	36.7	3.7	9.0	51.1	37.4
DKW45-10	812			100	5.3	114	41	31.7	2.3	9.1	52.2	35.5
ARC98015	788	857	823	97	7.0	114	42	33.7	4.3	9.8	51.3	37.7
ARC98007*	786	738	762	97	7.7	115	45	33.7	2.7	9.5	52.1	37.5
DKW47-15	784			96	5.3	114	41	33.3	3.7	8.9	48.1	36.0
DKW13-69	753	898	826	93	6.3	114	39	26.7	3.7	11.4	48.3	36.2
Forza	750			92	7.7	113	37	75.0	2.3	12.2	48.0	36.3
Flash	740	215	477	91	7.7	116	43	47.2	0.5	11.8	51.0	37.5
HyClass 110W	739			91	7.3 4.7	116	38	23.3	1.0	9.6	49.5	36.5
Abilene	739 734	711	723	90	4.7 5.7		36 48	25.3 26.7	5.3	10.4	50.3	36.5
BSX-567	734 725		123	90 89	5.7 5.3	116	46 42	26.7 32.8	5.5 5.5	9.6	50.3 50.8	35.0
	725 689			89 85	5.3 8.3	116	42 41			9.6 8.6	50.8 52.8	35.0 40.1
Dimension		257						7.0	17.0			
Taurus	668	357	513	82	6.0	114	39	15.7	1.0	11.2	50.7	38.5
CWH633*	644			79	8.0	113	43	73.3	11.7	9.1	49.0	37.4

Table 25. Results from the 2008 National Winter Canola Variety Trial at Hesston, KS

				Yield % of	Fall	50%	Plant				Test	
Entry	•	ield (lbs	s/a)	test avg.	Stand	Bloom	Height	Lodging	Shatter	Moisture	Weight	Oil
	2008	2007	2-Yr.	2008	(0-10)	(day)	(in.)	(%)	(%)	(%)	(lbs/bu)	(%)
Sumner	638	809	723	78	5.3	114	43	13.3	10.0	9.7	49.0	36.5
Visby	597			74	6.0	113	39	53.3	1.3	10.7	50.8	37.1
DKW41-10*	571			70	6.3	114	38	73.3	0.5	7.7	49.7	35.7
Kronos	553	459	506	68	6.3	114	41	35.3	34.0	10.7	51.7	36.8
CWH116	537			66	6.3	115	39	38.7	24.0	8.5	50.8	39.9
Rally	536	502	519	66	6.3	115	43	36.7	0.7	10.7	48.8	37.1
Hybrisurf	518			64	7.7	114	38	38.7	5.0	9.4	49.8	39.2
Satori	472	706	589	58	7.0	114	37	58.3	22.5	7.7	50.5	38.0
Hybrigold	454	935	695	56	8.0	113	39	65.0	4.0	9.3	49.5	37.2
45D03*	434			53	8.0	113	35	88.3	1.0	9.7	51.5	38.2
Hornet	434	488	461	53	8.0	113	45	70.0	2.0	10.0	48.8	36.2
Sitro	417	404	411	51	8.3	113	41	65.0	1.0	9.6	52.4	37.3
46W14	403			50	6.3	114	37	80.0	1.0	10.8	49.7	38.2
HyClass 115W*	374			46	7.7	113	42	88.7	3.7	8.4	51.2	36.1
CWH111	365			45	8.3	114	34	73.3	5.7	8.7	48.7	35.9
HyClass 107W	362			45	5.7	115	41	43.3	2.0	8.3	51.4	37.0
Hybristar	257	405	331	32	7.0	114	36	86.7	0.7	9.9	51.4	36.5
Jetton		866			1.3							
Plainsman		1205			1.3	116	37	99.4	0.0	11.5		36.7
Mean	813	703			6.8	114	42	34.5	4.5	9.9	50.6	37.2
CV	32	34			18.9	1	7	83.9	239.4	13.2	4.9	2.1
LSD (0.05)	427	383			2.1	2	5	46.9	NS	2.1	4.0	1.5

Bold - Superior LSD Group - Unless two entries differ by more than the LSD, little confidence can be placed in one being superior to the other. Yields adjusted to 9% moisture. *Plot in 3rd replication severely lodged by heavy rain. Entries showing crown rot from winter injury were severely lodged. Bloom is recorded as the date after January 1 when 50% of plants have one or more open flowers.

Scottsbluff, Nebraska

Alexander Pavlista and Eric Nielsen

University of Nebraska Panhandle Research Center

Planted: 8/12/2007 at 5 lbs/a in 12-in. rows

Harvested: 7/15/2008
Herbicides: Poast
Insecticides: None
Irrigation: 4.3 in.
Previous Crop: Wheat

Soil Test: P=29, K=769, pH=8.2

Fertilizer: 35-0-0-50 lbs N-P-K-S fertilizer in spring

Soil Type: Sandy loam

Elevation: 4300 ft Latitude: 41°9'N

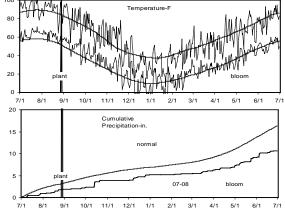


Table 26. Results from the 2008 National Winter Canola Variety Trial at Scottsbluff, NE

				Yield (% of				Fall				
Name		Yield (lb		test avg.)	Wir	nter Sur	vival (%)	Stand	Bloom	Height	Shatter	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(%)	(%)	(in.)	(%)	(%)
Satori	3276			129				93	20	47		40.2
Rally	3158			124				93	10	51		38.0
KS3074	3155			124				97	10	54		37.4
Abilene	3114			123				95	12	49		37.1
CWH633	3049			120				94	27	51		37.3
DSV07100	2961			117				92	10	48		38.6
Sitro	2862			113				97	18	47		37.8
Virginia	2844			112				93	10	45		35.9
DKW13-69	2794			110				93	8	47		37.7
KS3254	2780			109				91	4	56		36.6
Forza	2771			109				97	13	43		35.7
Baldur	2741			108				93	30	48		37.2
DKW41-10	2738			108				96	20	46		36.4
KS4158	2729			107				94	18	51		37.8
NPZ0791RR	2729			107				98	22	46		37.5
Visby	2727			107				85	32	50		37.6
CWH116	2726			107				97	12	46		39.4
KS9135	2719			107				94	13	54		35.7
Flash	2698			106				93	7	52		37.3
KS7436	2689			106				93	8	52		37.1
KS3018	2689			106				93	23	54		37.0
ARC98007	2680			106				93	13	52		37.6
CWH111	2674			105				94	35	40		37.8
Hornet	2665			105				95	12	51		37.3
Ceres	2632			104				94	5	49		37.1
KS4085	2623			103				93	15	54		38.1
HyClass 154W	2577			101				96	8	50		36.6
DKW47-15	2577			101				93	13	51		35.9
Safran	2565			101				96	13	49		36.5
DKW46-15	2553			101				92	13	49		37.8
KS3132	2553			101				93	10	52		36.7
Kronos	2553			101				91	12	51		35.4
KS3077	2547			100				96	10	52		36.0
ARC98015	2538			100				94	7	51		36.2
Hybrisurf	2517			99				97	12	45		39.0
HyClass 107W	2465			97				81	7	48		37.9
CWH095	2450			96				95	13	48		35.8
KS4022	2446			96				91	8	51		36.9
BSX567	2438			96				96	5	49		35.7
CWH081	2429			96				94	8	45		36.1
ARC21801	2426			96				94	13	51		36.9
Kadore	2411			95				96	8	44		35.1
	-								-			

Table 26. Results from the 2008 National Winter Canola Variety Trial at Scottsbluff, NE

				Yield (% of				Fall				
Name		Yield (lb	s/a)	test avg.)	Wir	nter Sur	vival (%)	Stand	Bloom	Height	Shatter	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(%)	(%)	(in.)	(%)	(%)
Dimension	2405			95				95	20	47		39.1
KS3302	2390			94				96	17	48		36.4
BSX501	2372			93				97	8	49		37.2
ARC97018	2369			93				96	13	49		36.8
HyClass 115W	2369			93				96	18	49		36.7
ARC97019	2369			93				94	8	50		36.2
Hybristar	2356			93				97	10	44		36.6
Wichita	2341			92				94	13	48		36.4
Sumner	2272			89				94	47	46		37.5
HyClass 110W	2266			89				95	30	42		36.2
Taurus	2163			85				93	30	48		37.0
Hybrigold	2114			83				94	7	46		38.2
DKW45-10	1990			78				95	45	43		36.1
Jetton	1086			43				20	2	49		36.3
Plainsman	1001			39				29	0	43		36.3
Mean	2540							92	15	49		37.0
CV	14							6	53	6		1.8
LSD (0.05)	600							9	13	5		1.4

Bold - Superior LSD Group - Unless two entries differ by more than the LSD, little confidence can be placed in one being superior to the other.

Farmington, New Mexico

Mick O'Neill and Curtis Owen, New Mexico State University

Planted: 9/6/2007 at 5 lbs/a in 10-in. rows

Harvested: 8/8/2008
Herbicides: None
Insecticides: None
Irrigation: 30 in.
Previous Crop: Fallow
Soil Test: NA

Fertilizer: 10-48-56-6 lbs N-P-K-S fertilizer in fall

120-0-0 lbs N-P-K fertilizer in spring

Soil Type: Doak sandy loam

Elevation: 5640 ft Latitude: 36°75'N

Comments:

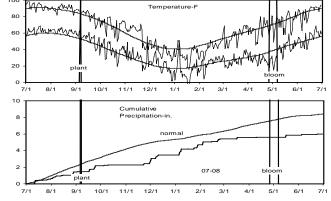


Table 27. Results from the 2008 National Winter Canola Variety Trial at Farmington, NM

				Yield (% of				50%	Plant		Test	
Name		Yield (II	os/a)	test avg)	Wir	ter Sur	vival (%)	Bloom	Height	Moisture	Weight	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(d)	(in.)	(%)	(lbs/bu)	(%)
Safran	4758			126	93			5/1	48	6.4	49.4	37.7
DSV07100	4677			123	100			4/29	50	9.6	50.2	40.5
KS3074	4627			122	93			5/1	50	9.1	49.9	38.0
Flash	4615			122	97			5/1	55	7.7	51.3	38.7
Kronos	4593			121	100			4/29	49	8.3	48.5	37.4
ARC2180-1	4583			121	100			5/1	52	8.7	46.0	38.6
Ceres	4563			120	100			4/30	49	9.6	49.1	38.9
Sitro	4561			120	100			4/29	51	9.8	49.1	39.0
ARC98007	4392			116	100			5/4	52	9.4	49.9	38.6
Virginia	4363			115	100			5/5	47	10.5	49.0	37.9
KS7436	4251			112	97			5/1	48	6.8	50.6	39.3
ARC98015	4235			112	100			5/1	54	7.9	49.8	38.5
Hornet	4156			110	100			4/29	49	8.8	50.2	38.1
CWH116	4130			109	87			4/30	52	9.8	48.3	38.0
Rally	4119			109	97			4/28	50	9.0	49.2	39.1
Hybrisurf	4112			109	100			4/28	50	10.2	48.9	40.2
KS3302	4105			108	100			4/29	47	8.6	50.6	38.4
Dimension	4062			107	93			5/3	48	6.8	49.0	39.0
Taurus	4041			107	88			5/2	47	10.3	48.5	39.1
CWH081	4005			106	100			5/1	49	8.7	49.8	37.5
CWH095	3963			105	100			4/29	49	7.7	49.8	37.0
Baldur	3923			104	100			4/29	51	8.6	50.2	38.6
KS3254	3896			103	98			5/5	53	11.1	49.1	38.8
KS3132	3867			102	100			5/2	50	8.6	50.5	38.9
Kadore	3853			102	93			5/1	50	9.4	48.8	38.2
KS4022	3849			102	100			5/2	51	6.8	50.2	38.9
KS4085	3835			101	100			4/30	50	10.1	48.0	37.9
Visby	3835			101	93			4/29	44	8.4	48.6	37.5
NPZ0791RR	3826			101	100			4/27	52	9.8	50.0	39.8
ARC97019	3733			99	93			5/3	49	9.3	47.8	38.1
KS3018	3729			98	100			5/3	49	8.0	48.4	37.2
Hybrigold	3711			98	100			5/1	50	6.1	50.3	39.3
DKW47-15	3662			97	97			5/2	49	8.0	47.1	37.2
Abilene	3659			97	100			5/2	53	9.3	49.7	38.2
Wichita	3640			96	100			5/2	50	10.4	49.3	37.7
Satori	3638			96	100			5/4	49	10.4	47.9	37.8
Hybristar	3495			92	100			4/29	50	10.0	47.9	37.4
DKW46-15	3480			92	100			5/1	47	10.0	48.3	37.9
HyClass 115W	3477			92	100			4/30	49	9.5	48.9	37.7
KS9135	3444			91	100			5/1	55	7.8	49.2	37.5
HyClass 110W	3439			91	95			5/4	46	7.6 7.7	49.2	37.3
KS4158	3343			88	100			5/4 5/1	48	7.7 7.4	49.0 46.6	38.9
DKW45-10	3329			88	98			4/27	48	6.4	49.3	37.8

Table 27. Results from the 2008 National Winter Canola Variety Trial at Farmington, NM

				Yield (% of				50%	Plant		Test	
Name		Yield (Ik	os/a)	test avg)	Wir	nter Sur	vival (%)	Bloom	Height	Moisture	Weight	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(d)	(in.)	(%)	(lbs/bu)	(%)
CWH633	3258			86	98			5/3	50	9.9	49.5	38.9
HyClass 154W	3216			85	100			4/29	54	6.5	50.2	37.1
ARC97018	3123			82	98			5/3	54	9.3	46.8	37.2
DKW13-69	3052			81	98			5/1	51	9.4	48.6	38.6
Forza	2908			77	97			5/3	44	9.8	49.4	37.7
CWH111	2625			69	100			5/4	52	10.5	48.0	37.3
DKW41-10	2504			66	100			5/6	47	6.5	48.9	37.4
Sumner	2348			62	90			5/1	47	11.4	46.7	36.3
KS3077	2340			62	100			5/7	52	8.7	49.9	38.7
Mean	3787				98			5/1	50	8.8	49.0	38.2
CV	23				6				7	19.8	3.8	2.1
LSD (0.05)	NS				NS				NS	2.8	NS	1.6

Bold - Superior LSD Group - Unless two entries differ by more than the LSD, little confidence can be placed in one being superior to the other. Yields adjusted to 10% moisture. Bloom is recorded as the date after January 1 when 50% of plants have one or more open flowers.

Enid, Oklahoma

John Lamle, Johnston Seed Company

Planted: 9/24/2007 at 5 lbs/a in 9-in. rows

Harvested: 6/16/2008 Herbicides: Trifluralin 1.5 pt/a

Insecticides: None Irrigation: None Previous Crop: Millet Soil Test: NA

Fertilizer: 30-0-0 lbs N-P-K fertilizer in fall

90-0-0 lbs N-P-K fertilizer in spring

Soil Type: Silt loam

Elevation: 1227 ft Latitude: 36°26'N

Comments: Heavy thunderstorms prior to and during

harvest resulted in low yields.

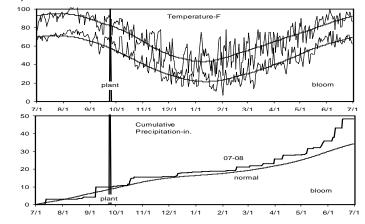


Table 28. Results for the 2008 National Winter Canola Variety Trial at Enid, OK

				Yield (% of				Fall	Plant				Test	
Name		Yield (II	os/a)	test avg.)	Win	ter Sur	vival (%)	Stand	Height	Lodging	Shatter	Moisture	Weight	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(0-10)	(in.)	(%)	(%)	(%)	(lbs/bu)	(%)
Safran	1174			226	99			8.7	55	6.7	6.7	9.6	51.1	35.9
45D03	1161			223	99			8.7	48	11.7	8.3	7.1	51.3	36.9
46W14	1138			219	98			8.0	50	13.3	20.0	9.9	51.3	36.5
Flash	1125			216	90			8.7	58	7.0	5.3	7.2	51.2	37.9
KS9135	1066			205	100			8.3	56	25.0	26.7	9.0	50.5	36.6
Rally	1037			199	93			8.3	52	38.3	2.3	6.1	49.8	36.4
HyClass 154W	972			187	91			8.3	52	5.0	20.0	8.4	51.8	37.0
KS4022	969			186	100			8.0	52	25.0	21.7	9.0	49.4	37.2
KS4158	935			180	95			8.3	50	31.7	40.0	9.1	50.2	37.2
Virginia	827			159	92			9.0	49	28.3	23.3	9.4	50.2	34.7
Hornet	721			139	100			7.7	53	36.7	2.0	7.4	50.4	37.2
Hybristar	706			136	96			8.0	51	8.3	10.0	6.4	50.4	37.3
KS3254	686			132	100			8.3	53	65.0	15.0	10.2	51.5	36.6
KS4085	654			126	100			8.7	55	56.7	26.7	7.0	51.1	36.6
CWH081	651			125	100			7.7	49	26.7	20.0	8.2	50.3	38.1
Forza	648			124	100			8.3	49	8.7	30.0	9.0	49.1	37.3
CWH095	591			114	100			8.3	46	17.0	10.0	6.9	49.3	37.4
Dimension	589			113	98			8.0	53	5.0	33.3	6.8	50.5	37.5
Wichita	584			112	100			9.0	55	22.0	53.3	5.9	49.8	37.9
Kadore	578			111	100			8.0	49	38.3	20.0	7.3	50.5	34.9
ARC97019	546			105	97			8.7	55	61.7	28.3	8.0	50.1	36.4
BSX-501	546			105	99			7.0	55	23.3	13.3	7.2	49.9	36.6
CWH111	545			105	100			8.3	49	28.3	26.7	6.4	51.1	38.0
Plainsman	538			103	100			1.0	49	33.3	11.7	7.8	49.3	35.5
Ceres	517			99	87			8.3	51	25.0	50.0	8.5	50.6	37.0
Hybrigold	490			94	99			8.3	53	5.0	26.7	6.5	50.5	38.0
CWH116	483			93	100			8.0	54	6.7	30.0	6.9	50.3	38.0
ARC2180-1	474			91	98			8.0	52	45.0	21.7	7.9	50.1	36.6
Abilene	474			91	100			8.7	54	23.3	51.7	7.2	50.3	36.7
KS3077	471			91	100			8.0	51	36.7	28.3	6.5	50.8	37.6
Sitro	451			87	97			8.0	55	21.7	20.3	6.6	51.5	38.9
Baldur	448			86	100			7.7	51	18.3	20.0	7.3	39.2	38.1
NPZ0791RR	440			84	99			9.3	54	51.7	43.3	7.4	50.9	37.4
HyClass 107W	426			82	100			2.7	55	15.0	33.3	8.7	46.3	36.4
KS3132	417			80	100			8.3	54	16.7	45.0	7.5	50.2	38.1
ARC98015	413			79	99			8.0	55	38.3	25.0	7.0	43.1	37.7
KS3074	395			76	100			8.7	54	20.0	30.0	7.2	51.1	37.0
DKW13-69	377			72	99			8.0	50	26.7	26.7	6.3	50.4	37.9
BSX-567	367			71	100			8.0	52	43.3	40.0	7.1	50.7	36.4
46W99	359			69	99			7.0	53	53.3	33.3	6.9	50.3	38.2
ARC98007	349			67	99			8.0	55	50.0	16.7	7.9	49.1	36.1
DKW47-15	348			67	100			7.0	50	51.7	48.3	7.2	36.1	37.7

Table 28. Results for the 2008 National Winter Canola Variety Trial at Enid, OK

				Yield (% of				Fall	Plant				Test	
Name		Yield (lb	os/a)	test avg.)	Wir	nter Surv	vival (%)	Stand	Height	Lodging	Shatter	Moisture	Weight	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(0-10)	(in.)	(%)	(%)	(%)	(lbs/bu)	(%)
DSV07100	346			66	92			8.0	53	36.7	23.3	6.6	45.3	37.7
Taurus	325			62	98			9.0	51	25.0	50.0	7.6	49.8	37.3
KS3018	319			61	100			9.0	56	33.3	33.3	5.7	48.8	38.0
Jetton	312			60	100			0.7	48	40.0	8.3	7.8	49.1	35.1
Visby	294			56	100			7.7	55	28.3	41.7	5.9	41.3	37.5
ARC97018	291			56	99			7.7	55	26.7	20.0	7.1	45.5	36.3
KS3302	287			55	100			8.0	55	33.3	53.3	6.7	49.7	36.8
Hybrisurf	282			54	98			8.7	53	16.7	53.3	6.3	50.0	38.3
Satori	280			54	93			8.7	49	15.0	73.3	6.5	38.8	39.5
HyClass 115W	265			51	100			8.3	51	31.7	65.0	6.6	32.4	39.3
KS7436	202			39	100			8.3	53	50.0	26.7	5.4	34.4	36.9
DKW45-10	201			39	99			8.3	46	10.0	68.3	6.8	41.7	36.5
DKW41-10	199			38	100			8.7	49	25.0	53.3	7.0	49.2	37.3
HyClass 110W	190			36	100			7.7	52	55.0	30.0	5.6	41.9	37.5
Sumner	188			36	100			7.3	55	13.3	46.7	6.1	41.4	37.9
Kronos	177			34	99			7.7	54	68.3	21.7	7.3	51.5	36.4
DKW46-15	175			34	100			8.3	51	40.0	53.3	7.0	45.2	38.6
CWH633	167			32	100			8.0	53	40.0	50.0	5.7	46.7	35.5
Mean	521				98			7.9	52	29.3	30.6	7.3	48.0	37.2
CV	42				3			8.1	5	80.7	38.2	24.5	14.7	2.2
LSD (0.05)	351				5			1.0	4	NS	18.9	NS	NS	1.7

Bold - Superior LSD Group - Unless two entries differ by more than the LSD, little confidence can be placed in one being superior to the other.

Goodwell, Oklahoma

Rick Kochenower

Oklahoma Panhandle Research and Extension Center

Planted: 9/17/2008 at 6 lbs/a in 7.5-in. rows

Harvested: None
Herbicides: None
Insecticides: None
Irrigation: 3 in. in fall
Previous Crop: NA

Soil test N=118, P=28, K=955, and pH=7.8 Fertility: 80-40-0 lbs N-P-K fertilizer in the fall

Soil Type: Richfield clay loam

Elevation: 3239 ft Latitude: 36°36'N

Comments: Excellent yields

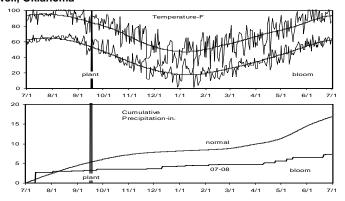


Table 29. Results from the 2008 National Winter Canola Variety Trial at Goodwell, OK

				Yield % of				Fall	Plant		Test	
Entry	,	Yield (lb	s/a)	test avg.	Wir	nter Sur	vival (%)	Stand	Height	Moisture	Weight	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(0-10)	(in.)	(%)	(lbs/bu)	%
CWH095	2752			135	9.5			9.7	43	5.2	48.2	35.0
Sitro	2694	3808	3251	132	9.8			8.3	42	5.3	49.3	35.8
CWH081	2672			131	9.7			8.7	41	5.6	47.8	35.2
Safran	2600			128	9.7			9.3	43	5.3	47.9	35.2
Hybrisurf	2542			125	9.5			9.7	40	5.4	45.7	37.0
CWH111	2497			123	9.5			9.0	42	6.0	47.2	35.7
Rally	2490	3115	2802	122	9.2			8.3	42	5.3	47.7	36.4
Hornet	2479	3709	3094	122	9.3			9.7	41	5.1	47.5	35.8
45D03	2479			122	9.7			8.7	43	5.7	49.0	34.7
Visby	2399			118	9.5			7.0	40	5.6	47.3	36.8
Satori	2338	2887	2613	115	9.3			8.7	40	5.3	47.6	37.9
Baldur	2321	3140	2731	114	9.5			9.0	43	5.4	49.5	35.3
Kadore	2318	3014	2666	114	9.8			8.7	41	5.5	45.6	34.3
Flash	2302	3377	2839	113	9.8			8.0	45	5.6	45.6	34.1
KS3074	2301	2770	2535	113	9.5			9.7	41	5.7	48.2	36.1
KS4085	2248	2479	2363	110	9.5			8.7	42	5.6	46.2	35.3
KS4158	2222			109	9.7			8.7	41	5.5	44.4	36.0
Hybristar	2211	2797	2504	109	9.5			8.7	41	5.4	46.4	34.4
CWH116	2208			108	9.5			8.7	40	5.6	43.3	36.2
Hybrigold	2186	2974	2580	107	9.3			8.0	41	5.3	45.3	34.8
Wichita	2185	3055	2620	107	9.2			8.7	42	5.3	49.0	35.3
ARC97018	2156	3183	2669	106	9.3			8.0	40	5.4	46.3	35.3
46W14	2154			106	9.5			9.7	45	5.5	48.7	36.6
Virginia	2142	2998	2570	105	9.5			7.3	44	5.4	47.2	34.2
KS3132	2133	2735	2434	105	9.7			10.0	41	5.2	47.0	35.6
KS4022	2127	3001	2564	104	9.5			9.7	42	5.5	45.3	36.1
Forza	2117			104	9.2			7.7	42	5.9	46.9	34.7
HyClass 115W	2089			103	9.8			7.3	40	5.4	46.7	36.2
Dimension	2066			101	9.7			8.0	42	5.8	46.2	38.1
HyClass 154W	2042	2923	2483	100	9.7			8.3	41	5.6	46.5	34.5
ARC2180-1	2030	3180	2605	100	9.0			8.7	44	5.5	46.1	34.5
BSX-567	2010			99	9.5			9.3	43	5.2	47.6	35.4
Kronos	2008	3367	2687	99	9.7			8.0	41	5.3	48.3	33.4
CWH633	1995			98	9.3			8.0	40	5.2	45.5	36.2
Taurus	1986	2990	2488	98	9.3			7.5	42	6.2	46.9	36.0
KS3254	1984	3172	2578	97	9.0			8.0	43	5.8	46.0	34.7
Abilene	1980	2380	2180	97	9.2			9.0	44	5.3	47.8	35.6
DKW47-15	1977			97	9.2			9.0	46	5.4	46.3	35.6
BSX-501	1973			97	9.7			7.3	43	5.6	43.8	34.0
DKW46-15	1957			96	9.7			7.3	40	5.1	45.7	36.0
HyClass 110W	1956			96	9.7			8.3	43	5.1	46.9	35.2
•	1933	2921	2427	95	9.7			8.0	44	5.6	46.5	34.9
Sumner	1933	2021		50	• • • •			0.0				

Table 29. Results from the 2008 National Winter Canola Variety Trial at Goodwell, OK

				Yield % of				Fall	Plant		Test	
Entry	,	Yield (lb	s/a)	test avg.	Wir	nter Sur	vival (%)	Stand	Height	Moisture	Weight	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(0-10)	(in.)	(%)	(lbs/bu)	%
DKW41-10	1920			94	9.3			8.7	44	5.5	47.4	36.3
KS9135	1909	2879	2394	94	9.3			8.3	44	5.4	46.1	34.5
ARC97019	1877	2862	2370	92	9.7			8.0	45	5.6	46.1	34.9
NPZ0791RR	1868			92	9.7			10.0	40	5.4	45.9	36.1
KS3018	1866	2877	2372	92	9.7			9.0	41	5.5	44.7	35.6
KS3077	1848	3053	2450	91	9.7			8.0	38	5.8	44.1	34.4
46W99	1825			90	9.5			8.3	42	5.5	47.9	37.1
ARC98015	1823	2637	2230	90	9.3			8.3	43	5.6	45.1	34.5
KS3302	1820	3087	2454	89	9.3			8.7	39	5.7	43.6	35.3
HyClass 107W	1798			88	9.3			7.3	44	5.5	45.4	34.6
ARC98007	1785	2661	2223	88	9.5			7.0	46	5.4	46.2	34.1
DSV07100	1757			86	9.3			8.3	41	5.5	47.9	36.2
Ceres	1743	2868	2306	86	9.8			9.0	41	5.5	47.2	34.6
DKW45-10	1594			78	9.7			7.7	41	5.4	44.2	34.8
DKW13-69	1551	2635	2093	76	9.2			8.3	42	5.5	45.0	34.6
Mean	2109	2914	2512		9.5			8.5	42	5.5	46.6	35.4
CV	10	10			4.0			12.4	8	4.9	3.7	2.8
LSD (0.05)	333	516			NS			1.7	NS	0.4	2.8	2.0

Bold - Superior LSD Group - Unless two entries differ by more than the LSD, little confidence can be placed in one being superior to the other.

Perkins, Oklahoma

Jerry Moore and Josh Massey, Oklahoma State University

Planted: 9/26/2007 at 5 lbs/a in 9-in. rows

Harvested: 6/5/2008 Herbicides: Trifluralin 1.5 pt/a

Insecticides: None Irrigation: None Previous Crop: Wheat Soil Test: NA

Fertilizer: 50-0-0 lbs N-P-K fertilizer in fall

70-0-0 lbs N-P-K fertilizer in spring

Soil Type: Teller sandy loam

Elevation: 916 ft Latitude: 35°59'N

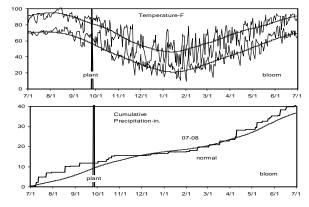


Table 30. Results from the 2008 National Winter Canola Variety Trial at Perkins, OK

				Yield (% of				Fall	Plant			Test	
Name		Yield (I	bs/a)	test avg.)	Wir	nter Sur	vival (%)	Stand	Height	Shatter	Moisture	Weight	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(1-10)	(in.)	(%)	(%)	(lbs/bu)	(%)
Satori	1213	627	920	136		90		3.0	47	1.7	8.3	48.4	41.8
KS9135	1172	799	986	132		99		3.0	50	5.0	8.4	48.3	41.6
Virginia	1169	1057	1113	131		98		4.3	45	2.3	11.4	46.3	40.8
ARC98007	1142	1150	1146	128		96		2.0	49	6.7	9.6	48.1	41.4
BSX-567	1101			124				1.7	49	1.3	10.3	48.6	40.2
Forza	1100			124				2.3	41	1.0	12.0	46.4	40.2
Hyrisurf	1089			122				3.7	47	2.3	9.7	47.8	40.9
DSV07100	1087			122				4.3	46	4.0	12.0	46.5	42.9
Dimension	1079			121				2.0	48	1.3	12.3	47.0	43.3
Hybrigold	1055	995	1025	118		99		2.7	49	1.0	10.2	46.5	40.5
46W14	1050			118				2.3	49	1.3	9.3	47.6	42.9
Kronos	1043	710	876	117		94		2.0	51	3.7	12.4	47.9	40.7
KS3254	1006	1277	1142	113		100		3.7	50	2.0	10.7	47.2	40.5
HyClass 154W	991	913	952	111		96		2.7	48	1.0	11.7	46.7	40.1
KS4158	987			111				4.0	47	2.0	9.9	47.6	41.3
Sitro	958	749	853	108		91		3.0	47	1.3	9.1	47.6	39.4
Safran	954			107				3.0	43	0.7	10.1	46.8	39.8
46W99	942			106				2.7	49	10.0	9.2	49.1	42.0
Taurus	935	576	756	105		94		4.0	47	3.0	9.9	47.6	41.9
Hybristar	930	607	769	104		78		3.7	45	2.7	10.1	47.4	39.8
ARC2180-1	927	1140	1033	104		99		2.0	51	2.7	10.4	47.5	42.5
Hornet	925	1218	1072	104		99		3.0	47	1.0	11.1	46.7	41.1
CWH081	924			104				3.0	43	1.0	12.0	45.3	38.8
ARC98015	916	874	895	103		99		2.3	53	6.7	9.8	48.9	41.5
Kadore	901	1521	1211	101		70		2.0	44	1.0	10.8	47.2	40.5
Ceres	896	968	932	101		88		3.3	47	6.7	10.2	47.9	41.0
45D03	886			99				3.7	43	1.0	11.7	46.4	41.1
KS3077	880	1153	1017	99		100		3.7	48	3.7	9.0	48.8	41.2
KS3074	877	959	918	98		100		4.3	46	4.0	9.8	47.5	39.3
KS4085	874	1112	993	98		99		3.3	49	4.0	9.4	48.0	40.9
Wichita	867	1190	1029	97		100		4.0	43	4.0	7.7	48.0	41.0
ARC97019	867	757	812	97		94		2.3	48	3.7	10.4	47.0	40.9
KS7436	863	1087	975	97		96		2.7	45	6.7	9.3	48.2	40.7
NPZ0791RR	856			96				4.0	46	3.0	10.0	46.4	40.4
CWH095	856			96				4.0	43	1.0	11.2	45.0	39.5
KS3132	851	820	836	96		99		2.3	48	2.7	8.4	47.7	41.8
Baldur	848	372	610	95		99		3.0	50	2.3	8.8	46.8	41.1
HyClass 115W	847			95				2.7	41	8.3	8.2	47.9	40.0
HyClass 110W	846			95				3.3	45	6.7	7.3	47.0	40.6
CWH116	823			92				2.7	43	1.0	11.0	47.2	42.4
DKW46-15	816			92				2.7	44	4.0	8.4	48.0	41.4
Visby	814			91				2.0	43	1.7	10.5	46.3	40.9
ARC97018	806	1075	941	91		96		2.3	49	2.0	9.5	46.7	41.9
,	500	1010	U-T I	J 1		50		2.0	70	2.0	0.0	70.7	71.5

Table 30. Results from the 2008 National Winter Canola Variety Trial at Perkins, OK

				Yield (% of				Fall	Plant			Test	
Name		Yield (I	bs/a)	test avg.)	Wir	iter Sur	vival (%)	Stand	Height	Shatter	Moisture	Weight	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(1-10)	(in.)	(%)	(%)	(lbs/bu)	(%)
Flash	803	1222	1012	90		91		4.7	47	2.0	10.8	47.5	41.8
Rally	801	1072	937	90		97		3.0	45	2.0	11.1	46.7	40.0
KS4022	765	1587	1176	86		100		3.0	49	5.0	9.6	46.6	41.6
BSX-501	756			85				1.7	47	1.0	8.1	47.9	40.9
DKW45-10	746			84				2.7	41	11.7	7.2	47.3	40.1
DKW41-10	718			81				3.3	41	1.7	7.7	48.0	40.7
Sumner	707	510	608	79		97		2.0	43	7.3	6.8	48.7	39.7
CWH633	707			79				2.7	44	1.3	7.5	48.5	42.1
HyClass 107W	689			77				1.0	50	1.0	8.1	47.4	40.7
CWH111	657			74				3.0	37	1.3	7.6	48.3	39.3
DKW47-15	655			74				2.7	43	3.0	8.4	47.1	40.3
KS3018	623	1130	876	70		100		3.0	49	2.7	8.5	45.1	40.3
Abilene	584	893	738	66		99		3.0	44	4.0	7.9	47.9	39.0
KS3302	582	1078	830	65		100		3.0	43	4.0	8.4	46.8	39.8
DKW13-69	475			53				2.7	45	1.3	9.1	46.1	41.2
Plainsman	357	975	666	40		100		0.7	49	0.5	8.2	45.2	41.0
Jetton	145	905	525	16		89		0.7	43	0.5	6.6	40.9	40.6
Mean	869							2.9	46	3.1	9.6	47.2	40.8
CV (%)	25							31.7	6	71.1	13.0	2.7	2.3
LSD (0.05)	352							1.5	5	3.5	2.0	2.1	1.9

Bold - Superior LSD Group - Unless two entries differ by more than the LSD, little confidence can be placed in one being superior to the other. Yields adjusted to 9% moisture.

Tipton, Oklahoma

Chad Godsey and Rocky Thacker, Oklahoma State University

Planted: 10/10/2007 at 5 lbs/a in 7.5-in. rows

Harvested: 6/3/2008 Herbicides: None Insecticides: Warhawk Irrigation: None

Fertility: 40-0-0 lbs N-P-K fertilizer in fall

80-0-0-10 lbs N-P-K-S fertilizer in spring

Previous Crop: Wheat

Soil Type: Tipton soil series

Elevation: 1274 ft Latitude: 34°26'N

Comments: Poor fall stands. Plants compensated very

well resulting in good yields.

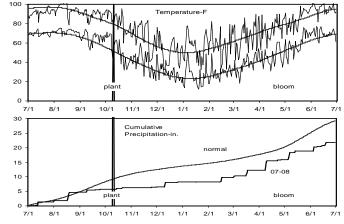


Table 31. Results from the 2008 National Winter Canola Variety Trial at Tipton, OK

				Yield % of				Fall	50%	Plant			Test	
Entry		Yield (II	os/a)	test avg.	Wi	nter Sur	vival (%)	Stand	Bloom	Height	Shatter	Moisture	Weight	Oil
-	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(0-10)	(day)	(in.)	(%)	(%)	(lbs/bu)	(%)
Hybrisurf	3156			136								9.2	44.9	39.8
Sitro	3075	4272	3674	132								7.9	44.9	38.4
NPZ0791RR	2871			124								9.1	43.6	39.4
46W99	2784			120								12.6	43.4	39.5
CWH081	2753			118								8.8	44.0	40.0
Hybristar	2732	3275	3004	118								7.0	43.1	39.8
Kadore	2728	2737	2732	117								13.9	43.1	38.2
Safran	2720			117								9.1	44.0	39.0
KS4022	2719	2909	2814	117								7.1	43.7	38.9
Kronos	2682	2521	2602	115								12.5	44.0	40.0
46W14	2673			115								16.8	44.3	40.3
ARC2180-1	2657	2697	2677	114								10.5	43.6	40.3
CWH116	2631			113								10.4	43.7	38.1
Hornet	2607	3331	2969	112								10.5	44.1	38.9
KS3074	2572	3070	2821	111								8.0	42.6	39.8
HyClass 115W	2553			110								10.9	43.7	39.9
CWH633	2519			108								8.4	43.2	40.5
Satori	2516	2763	2639	108								7.2	43.1	41.1
Flash	2513	3202	2857	108								12.5	44.1	40.6
KS3077	2476	2709	2592	107								10.5	42.9	40.4
KS4085	2448	3045	2747	105								15.7	43.6	39.3
Taurus	2445	2734	2589	105								11.9	43.7	39.3
Dimension	2441			105								13.5	44.0	40.1
KS3132	2433	3263	2848	105								21.4	41.9	40.2
CWH111	2427			104								10.7	44.7	37.0
Virginia	2421	2738	2579	104								10.4	42.6	38.4
Abilene	2415	2790	2603	104								8.1	43.7	41.1
KS3018	2390	2598	2494	103								12.1	42.5	39.0
DKW46-15	2381			102								7.1	44.6	38.9
Baldur	2361	2264	2313	102								10.9	44.4	38.3
BSX-567	2332			100								7.8	43.2	41.9
BSX-501	2330			100								10.6	44.3	41.7
Visby	2330			100								6.9	43.5	39.4
Rally	2305	3521	2913	99								14.3	43.2	39.0
ARC97019	2278	2841	2560	98								8.6	43.2	40.6
Sumner	2277	3025	2651	98								8.5	43.7	38.7
Hybrigold	2264	3288	2776	97								9.9	43.8	38.8
DKW41-10	2261			97								9.8	42.8	38.9
CWH095	2245			97								16.6	45.0	38.3
Forza	2210			95								17.8	42.2	40.0
ARC97018	2206	2308	2257	95								11.5	42.0	40.4
KS9135	2205	3043	2624	95								7.6	44.8	39.3

Table 31. Results from the 2008 National Winter Canola Variety Trial at Tipton, OK

				Yield % of				Fall	50%	Plant			Test	
Entry		Yield (It	os/a)	test avg.	Wi	nter Sur	vival (%)	Stand	Bloom	Height	Shatter	Moisture	Weight	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(0-10)	(day)	(in.)	(%)	(%)	(lbs/bu)	(%)
KS3254	2205	2725	2465	95								11.5	43.6	40.4
KS3302	2162	3176	2669	93								16.9	42.7	39.8
HyClass107W	2154			93								9.2	40.9	40.6
DSV07100	2150			93								7.9	45.8	39.3
Wichita	2148	2463	2305	92								14.5	44.8	39.1
HyClass 110W	2128			92								7.3	41.7	40.0
HyClass 154 W	2126	2855	2490	91								12.2	42.7	39.2
Ceres	2122	3009	2565	91								17.0	42.6	41.9
KS4158	2116			91								7.7	44.2	37.4
DKW47-15	2096			90								11.4	42.4	40.2
45D03	2084			90								24.9	42.6	39.0
ARC98007	2023	2661	2342	87								9.7	43.4	38.3
DKW45-10	1891			81								8.6	41.6	39.1
KS7436	1852	3212	2532	80								15.8	41.5	39.3
DKW13-69	1615	2872	2243	69								28.5	42.6	39.7
ARC98015	1611	2519	2065	69								19.5	41.8	39.9
Plainsman	955	1973	1464	41								15.0	43.7	40.2
Jetton	719	2531	1625	31									38.6	38.4
Mean	2324	2872	2598									11.7	43.3	39.5
CV	17	17										53.6	3.6	1.9
LSD (0.05)	640	921										10.1	2.5	1.5

Bold - Superior LSD Group - Unless two entries differ by more than the LSD, little confidence can be placed in one being superior to the other. Yields adjusted to 9% moisture.

Chillicothe, Texas

John Sij, Texas A&M University

Texas AgriLife Research & Extension Center at Vernon

Planted: 10/15/2007 at 5 lbs/a in 10-in. rows

Harvested: 6/3/2008 Herbicides: Trifluralin 1 pt/a

Insecticide: None
Irrigation: 2-in. preplant
Previous Crop: Fallow
Soil test: pH=7.0

Fertilizer: 60-0-0 lbs N-P-K fertilizer in fall

Soil Type: Abilene clay loam

Elevation: 1401 ft Latitude: 34°11'N

Comments: Excellent yields.

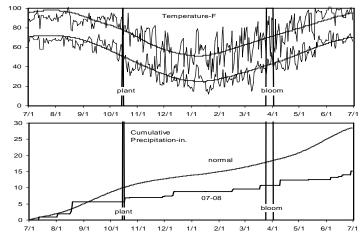


Table 32. Results from the 2008 National Winter Canola Variety Trial at Chillicothe, TX

				Yield % of				Fall	50%	Plant				Test	
Entry	Υ	ield (lbs	s/a)	test avg.	Winte	r Surv	ival (%)	Stand	Bloom	Height	Lodging	Shatter	Moisture	Weight	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(0-10)	(day)	(in.)	(%)	(%)	(%)	(lbs/bu)	(%)
Rally	2697			144				7.7	86.3	53	15.0	0.0	6.2	53.6	37.8
Hybrisurf	2677			143				5.7	86.7	50	0.0	1.7	6.1	54.2	38.5
Sitro	2543			136				6.7	86.0	50	0.0	0.0	6.2	54.6	38.7
Flash	2463			132				7.0	87.7	49	0.0	0.0	6.2	54.1	37.7
Hybrigold	2418			129				7.3	86.3	51	0.0	1.7	6.1	54.6	37.6
46W14	2405			128				6.7	86.3	52	0.0	5.0	6.2	54.8	39.4
Hornet	2389			128				7.0	86.0	48	30.0	0.0	6.1	54.1	36.7
Kadore	2325			124				7.0	90.3	44	0.0	0.0	6.4	53.6	39.1
KS3074	2296			123				7.0	88.7	49	0.0	3.3	6.3	54.1	37.9
HyClass 154W	2251			120				6.3	90.0	47	0.0	1.7	6.4	53.8	40.9
KS3077	2205			118				7.3	89.3	52	3.3	0.0	6.2	53.0	38.0
CWH081	2198			117				6.7	88.3	44	10.0	0.0	6.2	54.3	38.1
Hybristar	2116			113				6.0	85.7	46	1.7	0.0	6.2	54.5	38.3
Safran	2116			113				6.7	88.0	47	5.0	0.0	6.3	54.5	38.1
45D03	2091			112				8.0	88.7	47	0.0	1.7	6.5	54.2	38.4
Dimension	2055			110				7.7	86.0	47	3.3	6.7	6.4	54.8	37.7
Wichita	1997			107				7.0	88.0	48	0.0	0.0	6.2	53.7	38.2
CWH095	1933			103				7.7	89.3	44	18.3	1.7	6.2	54.4	38.2
DKW13-69	1924			103				7.7	87.7	49	0.0	0.0	6.3	53.7	39.3
CWH116	1917			102				7.0	91.0	41	0.0	0.0	6.3	52.4	38.8
Visby	1893			101				4.7	86.3	44	0.0	0.0	6.3	53.5	37.7
Kronos	1875			100				5.3	90.0	52	0.0	1.7	6.5	54.4	36.7
Forza	1864			100				6.0	87.7	43	0.0	1.7	6.5	53.7	39.4
Virginia	1853			99				7.0	86.7	50	10.0	0.0	6.2	54.0	38.8
BSX-501	1849			99				8.0	87.7	47	0.0	0.0	6.3	52.6	36.7
Baldur	1826			97				6.7	86.7	46	0.0	6.7	6.4	55.3	39.4
KS3302	1810			97				7.7	86.3	48	0.0	3.3	6.3	53.7	37.8
KS9135	1717			92				6.0	88.0	46	0.0	1.7	6.4	53.5	38.6
46W99	1679			90				4.3	87.7	44	0.0	3.3	6.5	53.7	38.7
DSV07100	1641			88				7.0	87.0	48	0.0	3.3	6.4	54.6	40.4
CWH633	1575			84				5.7	86.0	44	1.7	5.0	6.4	53.4	38.7
Taurus	1516			81				6.0	86.0	48	23.3	1.7	6.3	53.4	38.4
Satori	1512			81				6.7	86.0	42	10.0	3.3	6.2	52.3	38.9
Sumner	1510			81				5.0	86.7	47	0.0	5.0	6.2	54.6	37.4
CWH111	1390			74				7.3	84.7	41	61.7	0.0	6.4	55.0	37.8
NPZ0791RR	1383			74				8.0	86.3	45	25.0	0.0	6.5	54.1	37.4
DKW41-10	1347			72				6.7	84.7	40	3.3	5.0	6.3	53.4	38.1
DKW47-15	1321			71				6.3	87.0	40	15.0	1.7	6.3	52.9	38.0
HyClass 115W	1292			69				6.7	86.7	45	3.3	1.7	6.3	54.1	37.8
BSX-567	1292			69				6.0	88.0	45	6.7	1.7	6.3	54.0	37.4
HyClass 110W	1289			69				6.3	84.0	42	46.7	5.0	6.3	53.1	37.4

Table 32. Results from the 2008 National Winter Canola Variety Trial at Chillicothe, TX

				Yield % of				Fall	50%	Plant				Test	
Entry	Υ	ield (lbs	s/a)	test avg.	Winte	r Surv	ival (%)	Stand	Bloom	Height	Lodging	Shatter	Moisture	Weight	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(0-10)	(day)	(in.)	(%)	(%)	(%)	(lbs/bu)	(%)
DKW45-10	1045			56				6.3	85.3	41	5.0	6.7	6.2	50.6	37.8
DKW46-15	1038			55				6.3	86.7	40	21.7	0.0	6.3	52.6	38.4
Mean	1873							6.7	87.2	46	7.4	1.9	6.3	53.8	38.2
CV	18							20.1	0.9	11	154.8	137.1	1.6	1.3	1.5
LSD (0.05)	558							NS	1.3	8	18.7	4.2	0.2	1.2	1.1

Bold - Superior LSD Group - Unless two entries differ by more than the LSD, little confidence can be placed on one being superior to the other. Bloom is recorded as the date after January 1 when 50% of plants have one or more open flowers.

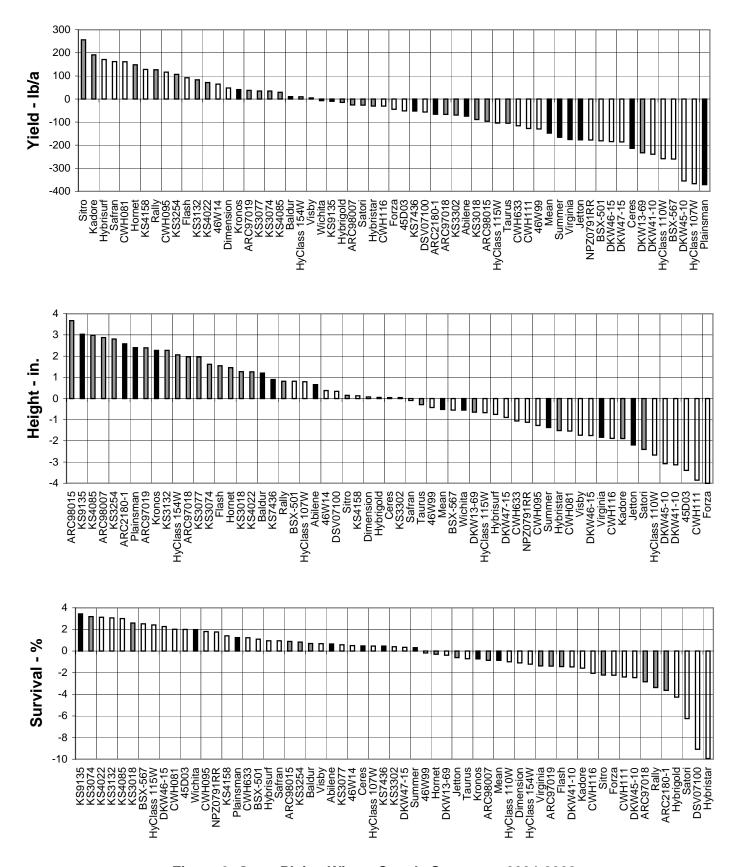
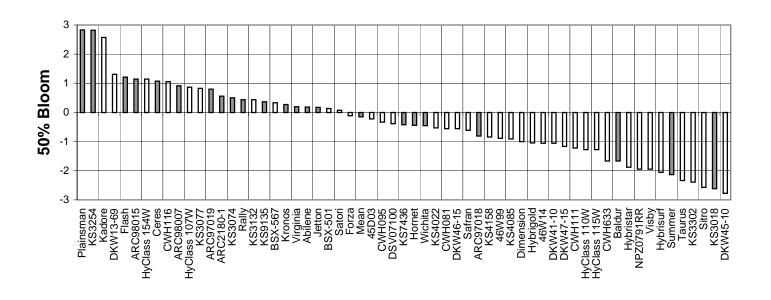
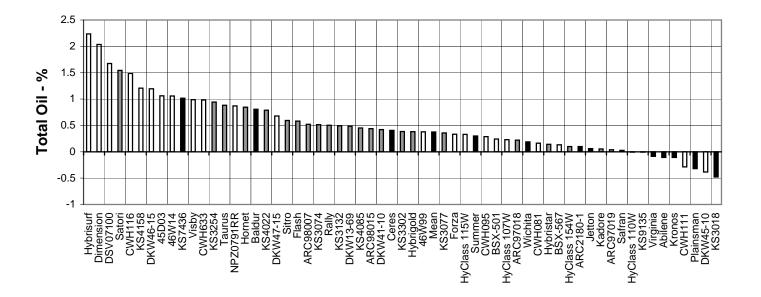




Figure 3. Great Plains Winter Canola Summary, 2004-2008.

Note: Values are averages of the differences between each cultivar and the mean of Kronos, Virginia, and Wichita for yield (lbs/a), winter survival (%), plant height (in.), 50% bloom date (days), and total oil content (%). The number of observations for each trait is represented by the different colored bars (as shown at right).

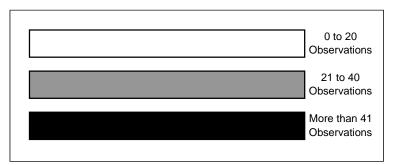


Figure 3. Great Plains Winter Canola Summary, 2004-2008 (continued).

Louise Strang, Montana State University Planted: 9/12/2007 in 6-in. rows

Harvested: 8/13/2008
Herbicides: None
Insecticides: None
Irrigation: None
Previous Crop: Fallow
Soil Test: NA

Fertilizer: 30-30-30 lbs N-P-K-S fertilizer in fall

Soil Type: Creston silt loam

Elevation: 2970 ft Latitude: 48°19'N

Comments:

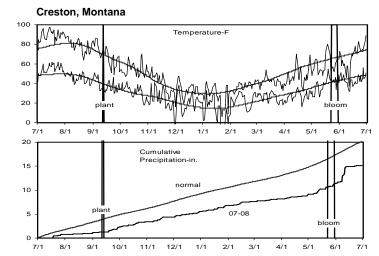


Table 33. Results from the 2008 National Winter Canola Variety Trial in Creston, MT

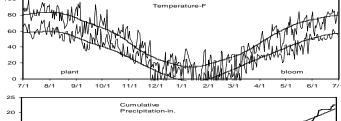
				Yield (% of	Win	ter Sui	vival	Fall	Spring	50%		Plant			Test	
Name	Yield ((lbs/a)		test avg.)		(%)		Stand	Stand	Bloom	Maturity	Height	Lodging	Moisture	Weight	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(0-10)	(pl/sqft)	(d)	(d)	(in.)	(%)	(%)	(lbs/bu)	(%)
KS9135	2611			146	80			3.9	5.6	5/23	7/28	54	17	8.8	49.1	43.9
KS3302	2270			127	30			5.7	3.2	5/28	7/28	57	22	8.1	46.4	43.0
CWH633	2081			116	31			5.7	2.7	5/29	8/6	58	1	9.4	45.2	42.7
KS3077	1941			108	21			6.9	2.5	5/27	8/4	58	5	12.7	43.6	43.7
DKW45-10	1931			108	50			6.5	5.3	5/26	8/3	57	10	9.1	44.0	41.7
Baldur	1914			107	40			7.9	5.7	5/26	7/29	54	22	7.4	44.0	43.4
Kronos	1902			106	40			4.8	3.0	5/29	8/5	53	3	10.4	49.7	42.8
DKW41-10	1808			101	30			6.3	3.2	5/26	7/30	59	1	7.4	46.2	41.7
DKW13-69	1796			100	55			4.1	2.6	5/25	7/30	57	9	9.0	43.5	44.2
Kadore	1788			100	54			6.5	5.8	5/24	7/28	57	4	7.5	49.2	43.7
HyClass 110W	1769			99	41			7.4	5.0	5/26	7/29	59	10	6.9	47.6	43.6
KS4022	1759			98	47			7.2	5.7	5/26	7/28	56	30	8.7	44.0	44.2
Ceres	1747			98	52			5.2	4.5	5/25	7/29	57	4	9.0	42.7	42.6
KS3254	1735			97	43			6.5	4.9	5/24	7/29	57	9	9.9	42.8	43.9
Virginia	1636			91	28			7.0	3.2	5/27	7/30	57	4	8.2	44.6	42.7
KS3018	1600			89	58			5.2	5.0	5/24	7/29	54	4	6.2	46.4	43.2
Sitro	1573			88	26			6.9	3.1	5/26	7/30	60	15	10.7	47.1	44.5
KS3074	1481			83	53			6.3	6.0	5/25	7/30	60	7	7.1	48.4	43.1
DKW46-15	1435			80	28			3.7	1.9	5/25	7/29	57	5	7.8	49.9	42.6
Wichita	1406			79	35			5.2	3.1	5/27	7/29	56	43	7.5	48.4	41.0
KS4158	1389			78	35			6.5	4.0	5/28	7/30	58	7	7.4	45.6	42.2
Mean	1789				42			6.0	4.1	5/26	7/30	57	11	8.5	46.1	43
CV	16				58			27.7	44.5			8	137	22.6	7.0	2.1
LSD (0.05)	472				NS			NS	NS			NS	NS	3.2	5.3	1.9

Bold - Superior LSD Group - Unless two entries differ by more than the LSD, little confidence can be placed in one being superior to the other. Bloom is recorded as the date when 50% of plants have one or more open flowers. Maturity is recorded as the date after January 1 when 90% of plants have reached mature color.

Burton Johnson, North Dakota State University
Planted: 9/12/07 at 8 lbs/a in 12-in. rows

Harvested: 7/28/08 Herbicides: None Insecticides: None Irrigation: None

Previous Crop: Hard red spring wheat


Soil Test: pH=6.4

Fertilizer: 100-0-0-30 lbs N-P-K-S fertilizer in spring

Soil Type: Beardon-Perella

Elevation: 722 ft Latitude: 46°58'N

Comments:

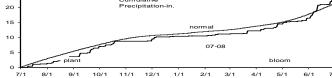


Table 34. Results from the 2008 National Winter Canola Variety Trial in Prosper, ND

				Yield (% of								
Line		Yield (lbs	/a)	test avg.)	Win	iter Survi	ival (%)	Plant Height	Bloom	Lodging	Shatter	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(in.)	(d)	(%)	(%)	(%)
Baldur	2239			93				47				
Ceres	2404			100				46				
DKW13-69	2160			90				49				
Forza	2601			108				43				
Kadore	2892			120				45				
Kronos	2425			101				49				
KS3018	2289			95				41				
KS3074	2738			114				43				
KS3077	1786			74				43				
KS3132	2553			106				47				
KS3254	2259			94				46				
KS3302	2438			101				41				
KS4022	2653			110				44				
KS4085	2595			108				49				
KS4158	2770			115				48				
KS9135	2710			112				48				
Plainsman	1193			49				52				
Sitro	2686			111				44				
Virginia	2336			97				43				
Wichita	2483			103				43				
Mean	2410							46				
CV	16							6				
LSD (0.05)	655							5				

Prosper, North Dakota

Bold - Superior LSD Group - Unless two entries differ by more than the LSD, little confidence can be placed in one being superior to the other.

Othello, Washington

Scot Hulbert, Washington State University Planted: 9/10/2007 at 5 lbs/a

Harvested: 7/22/2008 Herbicides: Treflan 1 qt/a

Insecticides: None Irrigation: Yes Previous Crop: Barley Soil Test: NA

Fertilizer: 125-30-50-20-2 lbs N-P-K-S-B fertilizer in fall

Soil Type: Othello silt loam

Elevation: 1099 ft Latitude: 46°84'N

Comments:

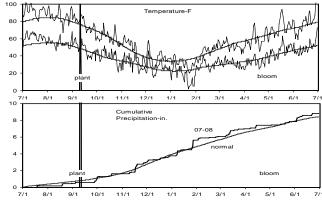


Table 35. Results from the 2008 National Winter Canola Variety Trial at Othello, WA

				Yield (% of						Test		
Name		Yield (lbs/a)	test avg.)	Wii	nter Sur	vival (%)	Yield (bu/a)	Fall Stand	Weight	Lodging	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	2008	(0-10)	(lbs/bu)	(%)	(%)
HyClass 154W	5201			130				104				42.9
Hybrisurf	5172			130				103				43.9
Safran	5128			129				103				42.9
CWH116	4853			122				97				43.0
CWH111	4756			119				95				42.5
Sitro	4732			119				95				44.0
Hybristar	4707			118				94				43.3
Dimension	4672			117				93				45.0
Hornet	4663			117				93				43.1
Kadore	4653			117				93				42.8
KS9135	4630			116				93				40.2
Satori	4598			115				92				42.5
NPZ0791RR	4501			113				90				44.5
Virginia	4439			111				89				42.1
Hybrigold	4432			111				89				42.3
DKW46-15	4430			111				89				43.6
DKW45-10	4409			111				88				40.5
Forza	4395			110				88				42.6
Ceres	4395			110				88				42.5
Abilene	4387			110				88				41.1
ARC2180-1	4348			109				87				42.6
KS3132	4326			108				87				41.4
KS4085	4320			108				86				42.5
Baldur	4308			108				86				43.5
Athena	4264			107				85				
Wichita	4240			106				85				42.0
Rally	4229			106				85				43.2
CWH633	4213			106				84				43.9
DKW41-10	4207			106				84				42.9
ARC97018	4202			105				84				42.6
ARC98007	4171			105				83				42.3
HyClass 110W	4154			104				83				42.4
CWH095	4080			102				82				41.9
DKW47-15	4063			102				81				42.6
DKW13-69	4060			102				81				41.6
KS4158	4036			101				81				42.1
Navaho	4034			101				81				
Taurus	3991			100				80				43.9
06.UIWC.1	3981			100				80				
KS3077	3956			99				79				41.9
DSV07100	3943			99				79				43.1
ARC98015	3940			99				79				43.4
Kronos	3902			98				78				40.7

Table 35. Results from the 2008 National Winter Canola Variety Trial at Othello, WA

				Yield (% of						Test		
Name		Yield (lbs/a)	test avg.)	Wii	nter Sui	rvival (%)	Yield (bu/a)	Fall Stand	Weight	Lodging	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	2008	(0-10)	(lbs/bu)	(%)	(%)
06.UIWC.5	3898			98				78				
Mohican	3890			98				78				
CWH081	3877			97				78				41.8
KS7436	3877			97				78				42.2
KS3022	3874			97				77				42.4
HyClass 115W	3829			96				77				42.2
ARC97019	3801			95				76				41.6
06.UIWH5.1	3764			94				75				
Visby	3754			94				75				42.4
KS4022	3738			94				75				40.7
KS3018	3687			92				74				41.2
KS3254	3672			92				73				41.0
Falstaf	3567			89				71				
Sumner	3545			89				71				42.5
KS3074	3529			89				71				41.7
06UIWH.5.2	3511			88				70				
Flash	3439			86				69				43.3
Rapier	3413			86				68				
Erica	3388			85				68				
Casino	2925			73				58				
Gospel	2732			69				55				
Salute	1547			39				31				
Jetton	1399			35				28				37.3
Plainsman	1248			31				25				36.4
Mean	3988							80				42.2
CV	14							14				2.1
LSD (0.05)	871							17				1.8

Bold - Superior LSD Group - Unless two entries differ by more than the LSD, little confidence can be placed on one being superior to the other

Lingle, Wyoming

Jerry Nachtman, University of Wyoming Planted: 8/28/2007 at 6 lbs/a

Harvested:

Herbicides: Trifluralin 1 qt/a

Insecticides: None Irrigation: Yes

Previous Crop: Winter wheat

Soil Test: NA Fertilizer: NA

Soil Type: Harverson silt loam

Elevation: 4180 ft Latitude: 42°07'N

Comments:

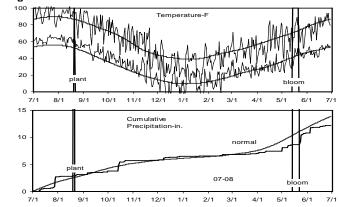


Table 36. Results for the 2008 National Winter Canola Variety Trial at Lingle, WY

		_		Yield (% of				Fall		Plant		Test	
Name		Yield (I		test avg.)			vival (%)	Stand	Bloom		Moisture	Weight	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(0-10)	(May)	(in.)	(%)	(lbs/bu)	(%)
Kadore	2917			133	95			9.5	17	34	8.8	50.0	39.9
Kronos	2835			129	86			9.3	15	38	9.4	47.1	39.0
CWH116	2685			122	93			9.2	16	37	10.0	45.4	43.4
CWH081	2622			119	98			9.0	14	34	8.4	49.6	39.9
CWH111	2578			117	90			10.0	17	35	11.5	45.5	40.6
Hornet	2550			116	92			9.3	15	37	9.7	47.9	40.2
CWH095	2535			115	96			8.5	14	35	8.1	47.4	40.5
KS4085	2534			115	97			9.5	15	40	9.5	48.0	40.8
KS3018	2523			115	95			8.5	14	39	8.9	46.6	38.5
KS9135	2506			114	96			9.7	14	40	9.1	46.9	40.5
Abilene	2496			113	94			9.5	18	37	10.1	46.3	39.3
KS3074	2479			113	95			9.8	17	37	8.8	47.9	39.8
CWH633	2424			110	96			9.0	14	36	8.8	48.0	39.3
Hybristar	2417			110	91			9.7	16	34	8.4	45.6	39.8
Sitro	2392			109	92			9.5	16	34	8.3	47.2	40.4
Safran	2374			108	87			9.0	16	36	9.1	46.7	39.7
DKW47-15	2367			108	94			8.8	14	37	8.6	46.3	41.0
KS4158	2348			107	93			9.3	14	37	8.5	46.6	40.7
Visby	2343			106	96			9.3	12	33	7.6	47.5	41.0
ARC97019	2328			106	85			9.3	19	40	11.5	46.3	38.3
ARC98007	2325			106	87			9.5	18	44	10.2	46.3	39.3
NPZ0791RR	2312			105	96			9.7	16	36	9.5	47.5	40.3
Baldur	2308			105	92			9.5	12	31	9.0	46.5	40.0
KS3132	2263			103	95			9.5	16	36	8.8	45.5	40.9
DKW41-10	2250			102	97			8.5	16	37	10.2	45.6	40.2
Ceres	2219			101	94			9.2	16	35	8.5	48.2	40.0
HyClass 154W	2219			101	89			9.3	17	37	10.1	46.2	41.0
DKW45-10	2219			101	94			9.5	14	33	9.0	47.6	38.6
Hybrisurf	2210			100	82			9.8	16	39	8.8	46.2	42.9
HyClass 110W	2199			100	86			9.5	16	34	11.2	44.9	38.9
Rally	2195			100	90			9.5	17	38	9.7	45.7	40.2
KS3254	2178			99	96			9.2	16	37	10.4	45.6	41.0
HyClass 115W	2178			99	95			8.3	12	32	8.1	45.8	38.3
Taurus	2176			99	93			9.5	13	36	8.7	47.6	40.1
KS4022	2175			99	96			9.3	15	37	8.5	46.0	41.5
KS3302	2145			97	97			9.3	15	33	9.0	47.4	39.7
ARC98015	2114			96	92			9.2	16	38	9.0	47.3	40.2
ARC97018	2099			95	95			9.3	15	35	8.7	46.6	40.0
KS3077	2059			94	95			9.5	16	37	9.5	46.4	39.5
KS7436	2057			93	93			9.3	15	36	8.6	46.7	41.4
DSV07100	2045			93	90			9.8	16	38	10.1	47.5	42.4
Hybrigold	2037			93	82			9.3	20	36	9.1	44.8	37.8
ARC2180-1	1904			93 87	94			9.3	15	37	8.4	44.0	40.1
ANOZ 100-1	1304			01	J-1			3.3	13	31	0.4	77.0	4 0.1

Table 36. Results for the 2008 National Winter Canola Variety Trial at Lingle, WY

				Yield (% of				Fall		Plant		Test	
Name		Yield (II	bs/a)	test avg.)	Wir	iter Sur	vival (%)	Stand	Bloom	Height	Moisture	Weight	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(0-10)	(May)	(in.)	(%)	(lbs/bu)	(%)
Sumner	1857			84	90			8.0	13	35	8.9	46.3	39.6
Forza	1836			83	88			9.3	17	32	8.7	43.0	38.2
Plainsman	1823			83	88			6.5	22	41	9.2	45.5	37.9
DKW46-15	1815			82	93			9.0	15	32	7.1	46.3	39.8
Satori	1798			82	83			9.3	17	35	9.8	44.5	39.5
Virginia	1736			79	96			9.3	16	28	7.9	43.4	37.1
Dimension	1722			78	87			9.5	17	38	9.0	44.6	42.4
Wichita	1719			78	96			9.0	16	33	8.8	43.2	39.4
DKW13-69	1692			77	92			9.5	16	34	8.9	45.3	39.2
Flash	1668			76	82			10.0	19	40	9.6	40.6	40.9
Jetton	1002			46	78			5.0	24	43	8.7	44.4	37.8
Mean	2200				92			9.2	16	36	9.1	46.3	40.0
CV	14				6			6.6	12	9	17.1	4.1	3.5
LSD (0.05)	502				9			0.9	3	5	2.5	3.1	2.8

Bold - Superior LSD Group - Unless two entries differ by more than the LSD, little confidence can be placed on one being superior to the other. Bloom is recorded as the date in May when 50% of plants have one or more open flowers.

Torrington, Wyoming

Charlie Rife, Blue Sun Biodiesel
Planted: 8/20/2007 at 5 lbs/a

Harvested: 7/26/2008 Herbicides: Trifluralin 1.25 pt/a

Insecticides: None Irrigation: Yes Previous Crop: Alfalfa Soil Test: NA

Fertilizer: 30-40-40-30 lbs N-P-K-S fertilizer in fall

50-0-0 lbs N-P-K fertilizer in spring

Soil Type: Dunday and Dwyer loamy fine sands Elevation: 4205 ft Latitude: 42°03'N

Comments:

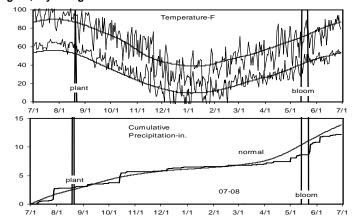


Table 37. Results from the 2008 National Canola Variety Trial at Torrington, WY

				Yield (% of				Fall	50%		Plant			
Name	Υ	ield (lb:	s/a)	test avg.)	Winte	r Survi	val (%)	Stand	Bloom	Maturity	Height		Moisture	
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(%)	(d)	(1-10)	(in.)	(%)	(%)	(%)
CWH095	3926			143	93			93	135	6.0	39	2.0	9.7	41.3
Kadore	3847	1702	2775	140	87	93	90	98	137	5.3	38	1.3	9.0	41.6
CWH081	3680			134	93			97	135	6.0	40	1.3	10.3	41.6
KS4158	3558			129	88			98	135	3.7	39	1.7	7.5	42.7
KS4022	3471	1400	2436	126	95	98	97	95	134	5.0	40	1.0	11.2	41.4
KS3254	3420			124	85			93	137	4.7	43	2.7	9.9	40.5
KS4085	3396	1528	2462	123	95	93	94	93	135	4.7	44	3.0	9.6	41.4
Baldur	3381	1232	2306	123	77	88	82	97	136	5.3	42	1.3	10.2	41.6
Visby	3368			122	82			92	136	5.7	39	2.0	8.9	41.4
Kronos	3351	925	2138	122	72	85	78	97	138	6.3	44	1.7	11.7	39.9
KS3018	3328	1635	2482	121	95	97	96	97	134	2.7	41	1.7	8.9	41.4
BSX-567	3324			121	97			100	134	3.3	39	1.0	8.3	40.3
KS3302	3298			120	93			98	134	4.0	39	3.3	9.5	41.1
KS3074	3284			119	88			98	136	3.7	41	2.7	8.9	41.3
KS3132	3237			118	87			95	135	3.3	43	3.0	9.1	41.5
Safran	3235			118	70			95	137	5.0	41	1.0	10.2	41.3
KS3077	3200			116	83			100	137	4.0	43	2.3	9.8	40.4
CWH116	3157			115	82			95	136	5.7	39	1.7	9.6	43.4
Wichita	3111	904	2008	113	90	95	93	93	136	3.0	40	3.0	9.0	40.5
Abilene	3068	980	2024	112	82	83	82	90	136	3.7	41	2.7	9.2	40.3
Taurus	3025	1484	2255	110	83	95	89	97	135	5.7	39	3.7	10.4	42.3
Hornet	2993			109	80			95	136	6.0	40	0.7	10.8	42.8
ARC97019	2969			108	72			100	138	4.7	41	2.3	10.7	41.2
BSX-501	2908			106	88			93	138	4.0	39	1.7	9.9	39.2
Ceres	2722	1151	1936	99	48	73	61	100	139	5.7	41	2.0	9.8	40.7
Sitro	2639			96	65			95	137	7.0	41	1.0	12.2	41.4
ARC98007	2612			95	62			98	139	5.7	42	2.0	11.4	40.9
Sumner	2581	1049	1815	94	88	87	88	87	135	2.0	37	3.7	9.1	40.2
ARC98015	2578			94	83			83	138	5.3	42	2.3	9.9	41.3
Hybrisurf	2528			92	47			98	136	6.0	42	2.7	11.4	42.8
Rally	2458			89	53			95	139	6.7	43	1.0	12.7	42.2
ARC97018	2409			88	62			95	139	5.3	36	2.7	12.2	40.0
DSV07100	2383			87	60			93	141	7.0	43	4.3	12.9	42.3
KS9135	2382	1403	1892	87	90	90	90	95	134	1.7	37	2.7	9.1	40.1
Forza	2371			86	67			95	139	6.7	37	2.3	11.2	40.3
Satori	2345	755	1550	85	58	73	66	90	137	5.7	36	4.3	10.2	41.6
Hybistar	2230			81	33			97	139	7.0	41	3.0	12.8	41.0
ARC2180-1	2157			78	40			97	139	6.7	41	4.3	12.9	39.8
Dimension	1818			66	27			97	139	7.7	43	1.3	14.7	41.9
Virginia	1809	1476	1643	66	30	93	62	100	141	7.0	38	2.0	13.5	39.4
Hybrigold	1723	831	1277	63	38	72	55	92	139	7.3	41	1.7	13.2	39.1
CWH111	1675			61	52			100	140	7.3	35	0.0	14.6	38.4
				٥.	J_			.00		0	55	5.5		55. 1

Table 37. Results from the 2008 National Canola Variety Trial at Torrington, WY

				Yield (% of				Fall	50%		Plant			
Name	Yi	ield (lbs	s/a)	test avg.)	Winte	r Surviv	/al (%)	Stand	Bloom	Maturity	Height	Shatter	Moisture	Oil
	2008	2007	2-Yr.	2008	2008	2007	2-Yr.	(%)	(d)	(1-10)	(in.)	(%)	(%)	(%)
Flash	1343			49	37			98	141	8.0	43	0.7	14.6	39.9
Jetton	952	1127	1040	35	77	88	82	50	141	7.3	41	0.7	12.3	38.8
Plainsman	540	821	681	20	63	88	76	37	141	6.7	44	0.7	12.0	38.3
Mean	2751				72			93	137	5.4	40	2.1	10.8	40.9
CV	11				16			8	1	16.5	4	46.9	12.7	1.7
LSD (0.05)	509				19			11	2	1.4	2	1.6	2.2	1.4

Bold - Superior LSD Group - Unless two entries differ by more than the LSD, little confidence can be placed on one being superior to the other. Bloom is recorded as the date after January 1 when 50% of plants have one or more open flowers. Maturity is recorded on a scale of 1=not mature to 10=fully mature.

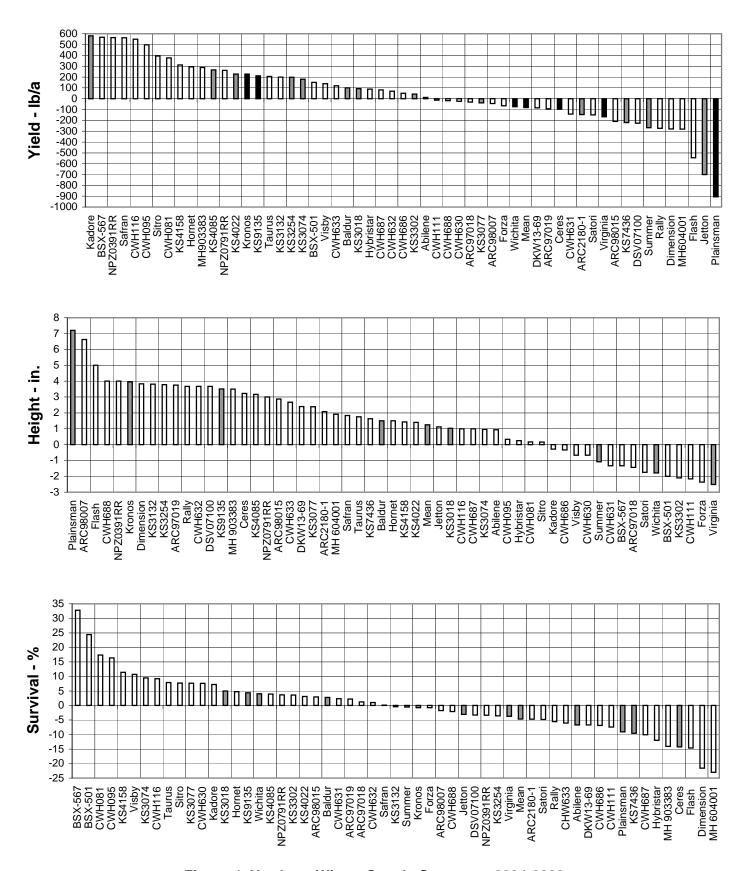
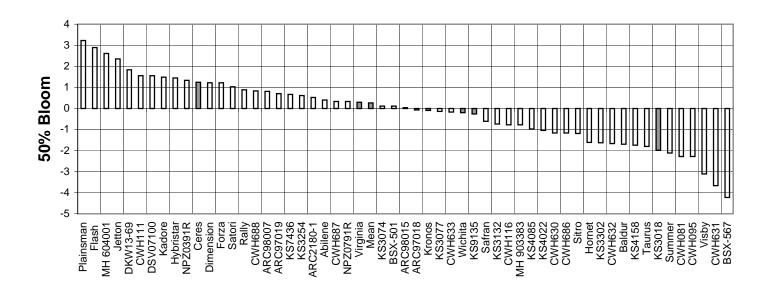
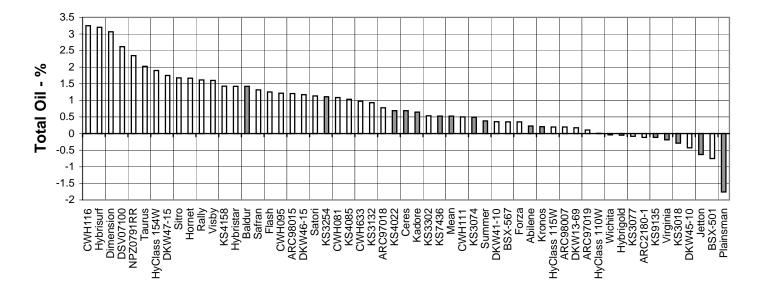




Figure 4. Northern Winter Canola Summary, 2004-2008.

Note: Values are averages of the differences between each cultivar and the mean of Kronos, Virginia, and Wichita for yield (lbs/a), winter survival (%), plant height (in.), 50% bloom date (days), and total oil content (%). The number of observations for each trait is represented by the different colored bars (as shown at right).

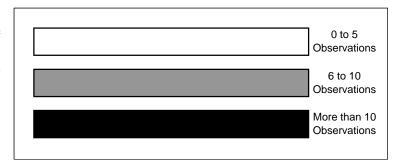


Figure 4. Northern Winter Canola Summary, 2004-2008 (continued).

Table 38. Field Ratings for Resistance to Phoma Blackleg, 2007-2008

National Winter Canola Variety Trial -- Plains, GA

		Blackleg ¹				Blackleg ¹	
Variety _	2008	2007	Average	Variety	2008	2007	Average
		% diseased				% diseased	
45D03	33			Hybristar	27	0	14
46W14	27			HyClass107W	73		
46W99	37			Jetton	70	3	37
Abilene	47	0	24	KS CH586	10		
ARC2180-1	30	0	15	KS3018	43	3	23
ARC97018	30	0	15	KS3074	20	0	10
ARC97019	27	2	15	KS3077	27	0	14
ARC98007	37	0	19	KS3132	27	0	14
ARC98015	37	3	20	KS3254	13	0	7
Baldur	40	0	20	KS3302	20	0	10
BSX-501	43			KS4022	33	0	17
BSX-567	67			KS4085	23	3	13
Ceres	40	0	20	KS4158	20		
CWH081	23			KS7436	27	7	17
CWH095	43			KS9135	23	2	13
CWH111	40			Kadore	20	2	11
CWH116	20			Kronos	43	0	22
DKW46-15	53			Hybrigold	30	0	15
HyClass 115W	20			Hybrisurf	47		
DKW47-15	40			HyClass 154W	13	2	8
CWH633	33			NPZ0791RR	27		
DKW45-10	37			Oscar*	83	7	45
HyClass 110W	27			P99.603.1	40		
DKW41-10	27			P99.603.5	37		
Cyclone2	90	57	74	P99.603.8	20		
DKW13-69	37			Plainsman	30	0	15
DSV07100	30			Rally	40	0	20
Dimension	30			Satori	57	0	29
Safran	20			Sitro	37	0	19
Falcon*	33	0	17	Sumner	23	0	12
Flash	30	0	15	Taurus	27	0	14
Flint*	47	7	27	Virginia	47	18	33
Forza	17			Visby	53		
Hornet	30	0	15	Westar*	90	53	72
Hearty	50			Wichita	30	2	16
•				Average	36	3	20
				LSD at 10% Level	19	5	

^{*} Included in test as a blackleg standard.

Bolding indicates entries with blackleg resistance ratings equal to the best rated entry within a column based on Fisher's protected LSD (P = 0.10).

NOTE: This nursery was located in the proximity of fields infected with Phoma blackleg the previous season. Disease severity was further increased by spreading infected stubble over the nursery shortly after planting.

Data collected by D. Spradlin, D. V. Phillips, and P. L. Raymer; The University of Georgia, College of Agricultural and Environmental Sciences, The Georgia Agricultural Experiment Stations; Research Report #716; October 2008. Used with permission.

¹ Blackleg rated as total percentage of plants killed by blackleg or with severe basal stem canker.

Table 39. Seed Sources for Entries in the 2007-2008 National Winter Canola Variety Trial

Brand/Name	Type ¹	Trait ²	U.S. Market	Trans- genic	Sd Trt ³	Brand/Name	Type ¹	Trait ²	U.S. Market	Trans- genic	Sd Trt ³
DL Seeds Inc.						Pioneer Hi-Bred					
Manitoba, Canad	la					Cole Randol (cole	e.randol@	pioneer.co	m)		
Kevin McCallum	(kevin.mc	callum@	dlseeds.d	ca)		46W14	Hyb		No	No	Н
Dimension	Hyb		Yes	No	Н	46W99	Hyb	RR	No	Yes	Н
DSV07100	Hyb		No	No	Н	45D03	Hyb	SD	No	No	Н
Flash	Hyb		Yes	No	Н	University of Arka	ansas				
Hornet	Hyb		Yes	No	Н	Department of Ci	op, Soil,	& Environm	ental Scie	nce	
Rally	Hyb		Yes	No	Н	Fayetteville, AR 7	72701				
Safran	Hyb		Yes	No	Н	Dr. Robert Bacor	rbacon	@uark.edu)			
Sitro	Hyb		Yes	No	Н	ARC2180-1	OP		No	No	Н
Norddeutche Pfla	anzenzuch	nt (NPZ)				ARC98007	OP		No	No	Н
Martin Frauen (m	.frauen@	npz.de)				ARC98015	OP		No	No	Н
Baldur	Hyb		Yes	No	Н	ARC97018	OP		No	No	Н
Ceres	ÓР		No	No	Н	ARC97019	OP		No	No	Н
Jetton	OP		No	No	Н	Winfield Solution	s / Cropla	an Genetics			
Kronos	Hyb		Yes	No	H	132 Arabian Path	•		76		
NPZ0791RR	Hyb	RR	No	Yes	Н	Jay Bjerke, Cano	,	,		landolak	es.com)
Taurus	Hyb		No	No	H	HyClass 107W	OP	RR	Yes	Yes	Р
Visby	Hyb		No	No	H	HyClass 110W	OP	RR	Yes	Yes	Р
Kansas State Un		enartme		nomy		HyClass 115W	OP	RR/SURT	Yes	Yes	Р
2004 Throckmort	-		_	nioniy		HyClass 154W	Hyb	RR	Yes	Yes	Н
Manhattan, KS 6			Oction			Monsanto Compa		IXIX	103	103	
Michael J. Stamn			odu)			800 N. Lindbergh	-				
Abilene	n (mjstam OP		,	No	Н	St. Louis, MO 63					
	OP OP		Yes	No No		•		@manaanta	aam)		
KS3018	_		No	No No	Н	Robert Ihrig (robe	_			No	ь
KS3074	OP		No	No	H	CWH081	Hyb		No	No	Р
KS3077	OP		No	No	Н	CWH095	Hyb		No	No	Р
KS3132	OP		No	No	Н	CWH111	OP		No	No	Р
KS3254	OP		No	No	Н	CWH116	Hyb	 DD/OUDT	No	No	Р
KS3302	OP		No	No	Н	CWH633	OP	RR/SURT	No	Yes	P
KS4022	OP		No	No	Н	DKW13-69	OP	RR	Yes	Yes	P
KS4085	OP		No	No	Н	DKW41-10	OP	RR	Yes	Yes	Р
KS4158	OP		No	No	Н	DKW45-10	OP	RR	Yes	Yes	P
KS7436	OP		No	No	H	DKW46-15	OP	RR/SURT	Yes	Yes	Р
KS9135	OP		No	No	Н	DKW47-15	OP	RR/SURT	Yes	Yes	Р
Plainsman	OP		Yes	No	Н	Miles Enterprises					
Sumner	OP	SU	Yes	No	Н	Brian Caldbeck, I			anager		
Wichita	OP		Yes	No	Н	(brical@milesnm	,				
Blue Sun Biodies						Forza	OP		Yes	No	Н
14143 Denver W		ay, Suite	e 100			Hybrigold	Hyb		Yes	No	Н
Golden, CO 8040						Hybristar	Hyb		Yes	No	Н
Dr. Charlie Rife (charlie@g	gobluesu	n.com)			Hybrisurf	Hyb		Yes	No	Н
BSX-501			IMI	No	Н	Kadore	OP		Yes	No	Н
BSX-567			No	No	Н	Satori	OP		Yes	No	Н
Virginia State Un	iversity A	gricultura	al Experim	ent Stati	on	¹ OP = open pollir	nated, Hy	b = hybrid.			
Petersburg, VA 2						² RR = glyphosate	resistan	nt IMI – imid	azolinono	racistant	SD -
Dr. Harbans Bha		nardwi@	vsu.edu)			semidwarf, SU =					
Virginia	OP		Yes	No	Н	sulfonylurea carry		•	or tolerailt,	551(1 =	

Senior Authors

Michael Stamm, Department of Agronomy, Kansas State University, Manhattan, & Oklahoma State University, Stillwater Cynthia La Barge, Department of Agronomy, Kansas State University, Manhattan

Other Contributors

Robert Bacon & Jim Kelly, University of Arkansas, Fayetteville Abdel Berrada & Mark Stack, Colorado State University, Yellow Jacket Harbans Bhardwaj, Virginia State University, Petersburg Brian Caldbeck & John Hagan, Miles Enterprises, Russellville, KY Ernst Cebert, Alabama A&M University, Meridianville Ellsworth Christmas, Purdue University, Columbia City Mark Claassen, Kansas State University Harvey County Experiment Field, Hesston Don Day, John Gassett, & Gary Ware, University of Georgia, Griffin Chad Godsey, Oklahoma State University, Stillwater Johnathon Holman, Kansas State University Southwest Research-Extension Center, Garden City Scot Hulbert, Washington State University, Pullman Fred lutzi & Winthrop Phippen, Western Illinois University, Macomb Burton Johnson, North Dakota State University, Fargo Jerry Johnson & Jean-Nicolas Enjalbert, Colorado State University, Ft. Collins Rick Kochenower, Oklahoma State University, Goodwell John Lamle, Johnston Seed Company, Enid, OK Kevin Larson, Colorado State University, Walsh Edwin Lentz, The Ohio State University, Tiffin Chuck Mansfield, Vincennes University, Vincennes, IN Jerry Moore & Josh Massey, Oklahoma State University, Perkins Jerry Nachtman, University of Wyoming, Lingle Mick O'Neill & Curtis Owen, New Mexico State University, Farmington Alexander Pavlista & Eric Nielsen, University of Nebraska, Scottsbluff Calvin Pearson, Colorado State University, Fruita Charlie Rife, Blue Sun Biodiesel, Torrington, WY Carl Sams & Dennis West, University of Tennessee, Knoxville Michael Schmidt & Cathy Schmidt, Southern Illinois University, Carbondale John Sij, Texas A&M University, Vernon Louise Strang, Montana State University, Bozeman Kim Tungate & Nicholas George, North Carolina State University, Raleigh Rocky Thacker, Oklahoma State University, Tipton Jim Valliant, Colorado State University, Rocky Ford

Copyright 2009 Kansas State University Agricultural Experiment Station and Cooperative Extension Service. These materials may be freely reproduced for educational purposes. All other rights reserved. In each case, give credit to the author(s), 2008 National Winter Canola Variety Trial, Kansas State University, April 2009. Contribution no. 09-250-S from the Kansas Agricultural Experiment Station.

Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned.

Publications from Kansas State University are available on the World Wide Web at: **www.ksre.ksu.edu**

Kansas State University Agricultural Experiment Station and Cooperative Extension Service

SRP 1009 April 2009